Biotin transport in basolateral membrane vesicles of human intestine. 1988

H M Said, and R Redha, and W Nylander
Department of Pediatric Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee.

The characteristics of the exit process of biotin from the enterocyte, i.e., transport across the basolateral membrane, was determined using an enriched basolateral membrane vesicle preparation of human intestine. Purity and suitability of basolateral membrane vesicles for transport studies was confirmed by enzymatic and functional criteria. Orientation of human basolateral membrane vesicles was determined by [3H]ouabain binding studies and was found to be 64% inside-out vesicles and the rest right-side-out vesicles and membrane sheets. Osmolarity studies indicated that the uptake of biotin by these vesicles represents transport into the intravesicular compartment, with little binding to membrane surfaces. The rate of biotin transport was linear for approximately 40 s but decreased thereafter. Transport of biotin was (a) Na+-independent, (b) saturable as a function of concentration, with an apparent KM of 1.1 microM and Vmax of 0.9 pmol/mg protein.15 s, (c) inhibited by structural analogues (desthiobiotin and biotin methyl ester) and related compounds (thioctic acid and thioctic amide), and (d) stimulated by inducing a positive intravesicular electrical potential. These studies are the first to demonstrate the existence of a carrier-mediated transport system for biotin in the basolateral membrane of human intestine.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

H M Said, and R Redha, and W Nylander
November 1990, The American journal of physiology,
H M Said, and R Redha, and W Nylander
October 1988, The American journal of physiology,
H M Said, and R Redha, and W Nylander
December 1992, Gastroenterology,
H M Said, and R Redha, and W Nylander
August 1991, The Biochemical journal,
H M Said, and R Redha, and W Nylander
January 1984, Progress in clinical and biological research,
H M Said, and R Redha, and W Nylander
October 2002, Digestive diseases and sciences,
H M Said, and R Redha, and W Nylander
July 1993, The American journal of clinical nutrition,
H M Said, and R Redha, and W Nylander
February 1989, Biochimica et biophysica acta,
H M Said, and R Redha, and W Nylander
October 2004, American journal of physiology. Gastrointestinal and liver physiology,
Copied contents to your clipboard!