[Differential mRNA expression in C57BL/6 mice with bleomycin-induced pulmonary fibrosis and its association with LncRNA co-expression network]. 2021

Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.

OBJECTIVE To study the changes in mRNA and long non-coding RNA (lncRNA) expression profiles in a mouse model of bleomycin-induced lung fibrosis and identify lung fibrosis-related mRNA for coding-noncoding coexpression (CNC) bioinformatics analysis of the differential lncRNAs. METHODS Lung fibrosis was induced by intratracheal injection of bleomycin in 10 C57BL/6 mice and another 10 mice with intratracheal injection of saline served as the control group. Lung tissues were harvested from the mice at 14 days after the injections and lung fibrosis was assessed using Masson and HE staining. LncRNA chip technology was used to screen the differentially expressed mRNAs and lncRNAs in mice with lung fibrosis, and GO and KEGG pathway analyses of the differential mRNAs were performed using NCBI database and UCSC database to identify possible fibrosis-related mRNAs, which were validated by qRT-PCR to construct a coding and non-coding co- expression network with the differential lncRNAs. RESULTS Compared with the control mice, the mice with intratracheal injection of bleomycin showed obvious lung fibrosis. The results of gene chip analysis showed that 127 mRNAs were upregulated and 184 mRNAs were down-regulated in the model group as compared with the control group. GO and pathway analysis suggested that the differentially expressed genes participated mainly in immune response, cell differentiation, and cytoskeletons; the involved signal pathways were associated mainly with cytokine and cytokine receptor interaction and chemokine signal transduction. Bioinformatics analysis identified a significant coexpression network between the fibrosisrelated mRNA and the differentially expressed lncRNA. CONCLUSIONS In mice with lung fibrosis, the differential expressions of fibrosis-related mRNAs in the lung tissues are closely correlated with the co- expressions of a large number of differential lncRNAs, which points to a new direction for investigation of the pathogenesis of pulmonary fibrosis.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011658 Pulmonary Fibrosis A process in which normal lung tissues are progressively replaced by FIBROBLASTS and COLLAGEN causing an irreversible loss of the ability to transfer oxygen into the bloodstream via PULMONARY ALVEOLI. Patients show progressive DYSPNEA finally resulting in death. Alveolitis, Fibrosing,Idiopathic Diffuse Interstitial Pulmonary Fibrosis,Fibroses, Pulmonary,Fibrosis, Pulmonary,Pulmonary Fibroses,Alveolitides, Fibrosing,Fibrosing Alveolitides,Fibrosing Alveolitis
D001761 Bleomycin A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors. BLEO-cell,Blanoxan,Blenoxane,Bleolem,Bleomicina,Bleomycin A(2),Bleomycin A2,Bleomycin B(2),Bleomycin B2,Bleomycin Sulfate,Bleomycins,Bleomycinum Mack,Bléomycine Bellon,BLEO cell,BLEOcell,Bellon, Bléomycine,Mack, Bleomycinum,Sulfate, Bleomycin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053263 Gene Regulatory Networks Interacting DNA-encoded regulatory subsystems in the GENOME that coordinate input from activator and repressor TRANSCRIPTION FACTORS during development, cell differentiation, or in response to environmental cues. The networks function to ultimately specify expression of particular sets of GENES for specific conditions, times, or locations. Gene Circuits,Gene Modules,Gene Networks,Transcriptional Networks,Gene Module,Circuit, Gene,Circuits, Gene,Gene Circuit,Gene Network,Gene Regulatory Network,Module, Gene,Modules, Gene,Network, Gene,Network, Gene Regulatory,Network, Transcriptional,Networks, Gene,Networks, Gene Regulatory,Networks, Transcriptional,Regulatory Network, Gene,Regulatory Networks, Gene,Transcriptional Network
D062085 RNA, Long Noncoding A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin. LincRNA,RNA, Long Untranslated,LINC RNA,LincRNAs,Long Intergenic Non-Protein Coding RNA,Long Non-Coding RNA,Long Non-Protein-Coding RNA,Long Noncoding RNA,Long ncRNA,Long ncRNAs,RNA, Long Non-Translated,lncRNA,Long Intergenic Non Protein Coding RNA,Long Non Coding RNA,Long Non Protein Coding RNA,Long Non-Translated RNA,Long Untranslated RNA,Non-Coding RNA, Long,Non-Protein-Coding RNA, Long,Non-Translated RNA, Long,Noncoding RNA, Long,RNA, Long Non Translated,RNA, Long Non-Coding,RNA, Long Non-Protein-Coding,Untranslated RNA, Long,ncRNA, Long,ncRNAs, Long
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
January 1996, Laboratory investigation; a journal of technical methods and pathology,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
October 2019, Applied microbiology and biotechnology,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
January 2013, Research in pharmaceutical sciences,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
July 2012, Toxicologic pathology,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
January 1997, American journal of respiratory cell and molecular biology,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
April 2024, Non-coding RNA,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
August 2000, American journal of respiratory cell and molecular biology,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
August 2012, Experimental biology and medicine (Maywood, N.J.),
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
March 2013, American journal of respiratory cell and molecular biology,
Xuefei Yu, and Li Li, and Linxin Zheng, and Weifeng Li
July 2001, Chest,
Copied contents to your clipboard!