Newly synthesized small nuclear RNAs appear transiently in the cytoplasm. 1988

G W Zieve, and R A Sauterer, and R J Feeney
Department of Anatomical Sciences, SUNY Stony Brook 11794.

Newly synthesized small nuclear RNA (snRNA) species U1 and U2 are easily identified in cytoplasmic fractions prepared by standard aqueous cell fractionation. However, because the mature stable snRNA species leak from isolated nuclei during cell fractionation, the possibility exists that these newly synthesized species also leak from the nucleus. To overcome the problems of nuclear leakage, mouse L929 cells were fractionated by cell enucleation. Enucleation extrudes the nuclei from cytochalasin-treated cells and produces cytoplasts that, by several criteria, are a bona fide cytoplasmic fraction uncontaminated by nuclear material. All six of the major snRNAs are present in the cytoplasts (c-snRNAs) shortly after synthesis. The species are identified by immunoprecipitation with specific antisera against the ribonucleoproteins and by Northern blotting and hybrid selection using cloned probes. This confirms and extends similar studies that used non-aqueous cell fractionation and manual dissection to overcome nuclear leakage. Kinetic studies demonstrate that the c-snRNAs return to the interphase nucleus after approximately 20 minutes in the cytoplasm. The U2 precursor U2' is processed to mature-sized U2 in the cytoplast fractions before returning to the nucleus. The c-snRNAs occur in ribonucleoprotein particles with similar antigenicity to the mature nuclear particles within six minutes of transcription. This suggests that in mammalian cells, important steps in the assembly of these ribonucleoproteins occur in the cytoplasm.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012342 RNA, Small Nuclear Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors. Low Molecular Weight Nuclear RNA,Small Nuclear RNA,snRNA,Chromatin-Associated RNA,Small Molecular Weight RNA,Chromatin Associated RNA,RNA, Chromatin-Associated
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

G W Zieve, and R A Sauterer, and R J Feeney
March 1973, Experimental cell research,
G W Zieve, and R A Sauterer, and R J Feeney
January 1973, Molecular biology,
G W Zieve, and R A Sauterer, and R J Feeney
June 1987, Biochemistry and cell biology = Biochimie et biologie cellulaire,
G W Zieve, and R A Sauterer, and R J Feeney
September 1976, Biochemical and biophysical research communications,
G W Zieve, and R A Sauterer, and R J Feeney
September 1974, Cell,
G W Zieve, and R A Sauterer, and R J Feeney
April 1978, Cell,
G W Zieve, and R A Sauterer, and R J Feeney
June 1985, Nucleic acids research,
G W Zieve, and R A Sauterer, and R J Feeney
December 1984, Journal of molecular biology,
G W Zieve, and R A Sauterer, and R J Feeney
March 1981, Wilhelm Roux's archives of developmental biology,
Copied contents to your clipboard!