Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration. 2021

Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China.

Altered subchondral bone and articular cartilage interactions have been implicated in the pathogenesis of osteoarthritis (OA); however, the mechanisms remain unknown. Exosomes are membrane-derived vesicles that have recently been recognized as important mediators of intercellular communication. Herein, we investigated if OA subchondral bone derived exosomes alter transcriptional and bioenergetic signatures of chondrocytes. Exosomes were isolated and purified from osteoblasts of nonsclerotic or sclerotic zones of human OA subchondral bone and their role on the articular cartilage chondrocytes was evaluated by measuring the extent of extracellular matrix production, cellular bioenergetics, and the expression of chondrocyte activity associated marker genes. Exosomal microRNAs were analyzed using RNA sequencing and validated by quantitative real-time PCR and loss-of-function. In coculture studies, chondrocytes internalized OA sclerotic subchondral bone osteoblast derived exosomes and triggered catabolic gene expression and reduced chondrocyte-specific marker expression a phenomenon that is often observed in OA cartilage. RNA sequencing and miRNA profiling have identified miR-210-5p, which is highly enriched in OA sclerotic subchondral bone osteoblast exosomes, triggered the catabolic gene expression in articular cartilage chondrocytes. Importantly, we demonstrate that miR-210-5p suppresses the oxygen consumption rate of chondrocytes, altering their bioenergetic state that is often observed in OA conditions. These effects were markedly inhibited by the addition of a miR-210-5p inhibitor. Our study indicates that exosomes released by OA sclerotic subchondral bone osteoblasts plays a critical role in progression of cartilage degeneration and might be a potential target for therapeutic intervention in OA.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D008297 Male Males
D010003 Osteoarthritis A progressive, degenerative joint disease, the most common form of arthritis, especially in older persons. The disease is thought to result not from the aging process but from biochemical changes and biomechanical stresses affecting articular cartilage. In the foreign literature it is often called osteoarthrosis deformans. Arthritis, Degenerative,Osteoarthrosis,Osteoarthrosis Deformans,Arthroses,Arthrosis,Arthritides, Degenerative,Degenerative Arthritides,Degenerative Arthritis,Osteoarthritides,Osteoarthroses
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D002358 Cartilage, Articular A protective layer of firm, flexible cartilage over the articulating ends of bones. It provides a smooth surface for joint movement, protecting the ends of long bones from wear at points of contact. Articular Cartilage,Articular Cartilages,Cartilages, Articular
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
October 2017, International journal of rheumatic diseases,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
April 2022, Scientific reports,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
August 2007, American journal of veterinary research,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
September 2023, The American journal of sports medicine,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
August 2012, Bone,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
January 1978, Surgical forum,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
January 1981, International orthopaedics,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
December 2002, Journal of musculoskeletal & neuronal interactions,
Xiaoxin Wu, and Ross Crawford, and Yin Xiao, and Xinzhan Mao, and Indira Prasadam
December 2011, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
Copied contents to your clipboard!