Design, Synthesis and Biological Screening of Novel 1,5-Diphenyl-3-(4-(trifluoromethyl)phenyl)-2-pyrazoline Derivatives. 2020

Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu

1-Phenyl-5-substituted-3-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazole derivatives were synthesized from chalcone derivatives. The structures of compounds were characterized by IR, 1H NMR spectroscopic methods and elemental analysis. All compounds were evaluated for their in vitro antioxidant activity using DPPH and ABTS methods, anti-inflammatory activity using lipoxygenase inhibitory method and antidiabetic activity using the ?-glucosidase inhibitory method. Especially, pyrazoline derivatives exhibited stronger anti-inflammatory activity than the reference drug indomethacin (IC50: 50.45 µM) and their IC50 values were in the range of 0.68 and 4.45 µM. In addition, the ADME properties of all chalcone and pyrazoline derivatives were calculated by Lipinski's and Veber's rules.

UI MeSH Term Description Entries
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical
D016859 Lipoxygenase Inhibitors Compounds that bind to and inhibit that enzymatic activity of LIPOXYGENASES. Included under this category are inhibitors that are specific for lipoxygenase subtypes and act to reduce the production of LEUKOTRIENES. 5-Lipoxygenase Inhibitor,Lipoxygenase Inhibitor,12-Lipoxygenase Inhibitors,15-Lipoxygenase Inhibitors,5-Lipoxygenase Inhibitors,Arachidonate 12-Lipoxygenase Inhibitors,Arachidonate 15-Lipoxygenase Inhibitors,Arachidonate 5-Lipoxygenase Inhibitors,Inhibitors, Lipoxygenase,12 Lipoxygenase Inhibitors,12-Lipoxygenase Inhibitors, Arachidonate,15 Lipoxygenase Inhibitors,15-Lipoxygenase Inhibitors, Arachidonate,5 Lipoxygenase Inhibitor,5 Lipoxygenase Inhibitors,5-Lipoxygenase Inhibitors, Arachidonate,Arachidonate 12 Lipoxygenase Inhibitors,Arachidonate 15 Lipoxygenase Inhibitors,Arachidonate 5 Lipoxygenase Inhibitors,Inhibitor, 5-Lipoxygenase,Inhibitor, Lipoxygenase,Inhibitors, 12-Lipoxygenase,Inhibitors, 15-Lipoxygenase,Inhibitors, 5-Lipoxygenase,Inhibitors, Arachidonate 12-Lipoxygenase,Inhibitors, Arachidonate 15-Lipoxygenase,Inhibitors, Arachidonate 5-Lipoxygenase
D047188 Chalcones Derivatives of CHALCONE that are important intermediates in the formation of FLAVONOIDS with anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. 1,3-Diphenyl-propanediones,1,3-Diphenyl-propenones,1,3-Diphenylpropanediones,1,3-Diphenylpropenones,Chalconoids,1,3 Diphenyl propanediones,1,3 Diphenyl propenones,1,3 Diphenylpropanediones,1,3 Diphenylpropenones
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins
D065089 Glycoside Hydrolase Inhibitors Compounds that inhibit or block the activity of GLYCOSIDE HYDROLASES such as ALPHA-AMYLASES and ALPHA-GLUCOSIDASES. alpha-Glucosidase Inhibitor,alpha-Glucosidase Inhibitors,Intestinal alpha-Amylase Inhibitors,Pancreatic alpha-Amylase Inhibitors,alpha-Amylase Inhibitors, Pancreatic,Hydrolase Inhibitors, Glycoside,Inhibitor, alpha-Glucosidase,Inhibitors, Glycoside Hydrolase,Inhibitors, Intestinal alpha-Amylase,Inhibitors, Pancreatic alpha-Amylase,Inhibitors, alpha-Glucosidase,Intestinal alpha Amylase Inhibitors,Pancreatic alpha Amylase Inhibitors,alpha Amylase Inhibitors, Pancreatic,alpha Glucosidase Inhibitor,alpha Glucosidase Inhibitors,alpha-Amylase Inhibitors, Intestinal

Related Publications

Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu
December 1999, Journal of colloid and interface science,
Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu
January 2017, Combinatorial chemistry & high throughput screening,
Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu
June 2010, Acta crystallographica. Section C, Crystal structure communications,
Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu
August 2014, Yao xue xue bao = Acta pharmaceutica Sinica,
Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu
December 2010, European journal of medicinal chemistry,
Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu
January 2018, Advances in pharmacological sciences,
Fatih Tok, and Bedia KoĂ yiÄźit-KaymakĂ Ä oÄźlu
September 2012, Acta crystallographica. Section E, Structure reports online,
Copied contents to your clipboard!