Metabolism and disposition of (RS)-2-methoxy-3-(octadecylcarbamoyloxy)propyl 2-(3-thiazolio)ethyl phosphate (MOTP) in rats and dogs. 1988

T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
Central Research Division, Takeda Chemical Industries Ltd., Osaka, Japan.

1. Metabolites (RS)-4-[(3-hydroxy-2-methoxy)propoxycarbonylamino]butanoic acid (I) and (RS)-2-[(3-hydroxy-2-methoxy)propoxycarbonylamino]acetic acid(II) were isolated from urine after i.v. administration of (RS)-2-methoxy-3-(octadecyl-[14C]carbamoyloxy)propyl 2-(3-thiazolio)ethyl phosphate (14C-MOTP) to rats and characterized by t.l.c., g.l.c.-mass spectrometry and p.m.r. spectrometry. 2. After i.v. administration of 14C-MOTP, the plasma concentration of the drug declined biphasically with half-lives of 0.22 and 3.94 h in rats, and 0.81 and 8.00 h in dogs. In rats and dogs, unchanged MOTP was the main 14C component in the plasma, together with a small amount of I and II. 14C-MOTP was highly bound to plasma protein of both animals. 3. Five min after i.v. administration of 14C-MOTP to rats, 14C was widely distributed in tissues, with the highest conc. in the lung and the lowest in the eye. The distribution of 14C was relatively slow in some tissues. In most tissues, 14C decreased to low levels at 96 h, except in the Harder's gland. 4. Elimination of 14C-MOTP was almost complete within 120 h in rats and 144 h in dogs. In both species, the administered 14C was excreted largely in the urine as I and II, with the remainder appearing in the faeces and the expired air. Biliary excretion and reabsorption of 14C were detected in rats. 5. During repeated i.v. administration of 14C-MOTP to rats for 7 days, the conc. of 14C in plasma and most tissues attained steady state within 5 days, except in Harder's gland, where the level rose gradually until the seventh day of dosing. Within 6 days after the last dosing, 96% of the injected dose was eliminated from the body.

UI MeSH Term Description Entries
D008297 Male Males
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010742 Phospholipid Ethers Phospholipids which have an alcohol moiety in ethereal linkage with a saturated or unsaturated aliphatic alcohol. They are usually derivatives of phosphoglycerols or phosphatidates. The other two alcohol groups of the glycerol backbone are usually in ester linkage. These compounds are widely distributed in animal tissues. Ether Phosphatidates,Ether Phospholipids,Glycerol Phosphate Ethers,Glycerophosphate Ethers,1-Alkyl-2-Acylphosphatidates,1 Alkyl 2 Acylphosphatidates,Ethers, Glycerol Phosphate,Ethers, Glycerophosphate,Ethers, Phospholipid,Phosphate Ethers, Glycerol,Phosphatidates, Ether,Phospholipids, Ether
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes

Related Publications

T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
January 1985, Advances in prostaglandin, thromboxane, and leukotriene research,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
June 1983, Biochemical pharmacology,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
March 1981, Toxicology and applied pharmacology,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
August 1972, The International journal of applied radiation and isotopes,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
January 2004, Journal of pharmaceutical sciences,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
July 2019, BMB reports,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
April 1988, Journal of pharmacobio-dynamics,
T Kobayashi, and H Hohnoki, and Y Esumi, and T Ohtsuki, and T Washino, and S Tanayama
October 1990, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!