Salicylate decreases the spontaneous firing rate of guinea pig auditory nerve fibres. 2021

Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. Electronic address: mark.wallace@nottingham.ac.uk.

Tinnitus has similarities to chronic neuropathic pain where there are changes in the firing rate of different types of afferent neurons. We postulated that one possible cause of tinnitus is a change in the distribution of spontaneous firing rates in at least one type of afferent auditory nerve fibre in anaesthetised guinea pigs. In control animals there was a bimodal distribution of spontaneous rates, but the position of the second mode was different depending upon whether the fibres responded best to high (> 4 kHz) or low (≤4 kHz) frequency tonal stimulation. The simplest and most reliable way of inducing tinnitus in experimental animals is to administer a high dose of sodium salicylate. The distribution of the spontaneous firing rates was different when salicylate (350 mg/kg) was administered, even when the sample was matched for the distribution of characteristic frequencies in the control population. The proportion of medium spontaneous rate fibres (MSR, 1≤ spikes/s ≤20) increased while the proportion of the highest, high spontaneous firing rate fibres (HSR, > 80 spikes/s) decreased following salicylate. The median rate fell from 64.7 spikes/s (control) to 35.4 spikes/s (salicylate); a highly significant change (Kruskal-Wallis test p < 0.001). When the changes were compared with various models of statistical probability, the most accurate model was one where most HSR fibres decreased their firing rate by 32 spikes/s. Thus, we have shown a reduction in the firing rate of HSR fibres that may be related to tinnitus.

UI MeSH Term Description Entries
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory
D012459 Salicylates The salts or esters of salicylic acids, or salicylate esters of an organic acid. Some of these have analgesic, antipyretic, and anti-inflammatory activities by inhibiting prostaglandin synthesis. Salicylate,Salicylic Acids,Acids, Salicylic

Related Publications

Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
December 1991, Hearing research,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
December 1993, Hearing research,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
June 2011, European journal of pharmacology,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
May 1990, Hearing research,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
January 1997, Nihon Jibiinkoka Gakkai kaiho,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
October 1991, Hearing research,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
June 1980, Hearing research,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
December 1993, Hearing research,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
January 1979, Acta oto-laryngologica,
Mark N Wallace, and Christian J Sumner, and Joel I Berger, and Peter A McNaughton, and Alan R Palmer
June 1984, Hearing research,
Copied contents to your clipboard!