Tolbutamide hydroxylation by human liver microsomes. Kinetic characterisation and relationship to other cytochrome P-450 dependent xenobiotic oxidations. 1988

J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, Adelaide, South Australia.

Tolbutamide hydroxylation has been investigated in human liver microsomes. Anti-human liver NADPH-cytochrome P-450 reductase IgG inhibited hydroxytolbutamide formation and this metabolite was not formed when NADPH-generating system was omitted from microsomal incubations. Tolbutamide hydroxylation followed Michaelis-Menten kinetics, consistent with the involvement of a single form of cytochrome P-450 in this reaction. Mean apparent Km and Vmax values for hydroxytolbutamide formation were 120 +/- 41 microM and 0.273 +/- 0.066 nmol min-1 mg-1, respectively. A range of clinically used drugs and xenobiotics used as probes for cytochrome P-450 activity in laboratory animals was screened for inhibitory effects on hydroxytolbutamide formation. Caffeine, paraxanthine, theophylline, theobromine, debrisoquine, erythromycin, phenacetin, propranolol, aminopyrine, benzo(a)pyrene and 7-ethoxycoumarin were all found not to inhibit tolbutamide hydroxylation. In contrast, sulphaphenazole, phenylbutazone, nifedipine, verapamil, cimetidine, aniline, dextropropoxyphene and mephenytoin were competitive inhibitors of tolbutamide hydroxylation. The respective apparent Ki values for these compounds were 0.12 microM, 11 microM, 15 microM, 118 microM, 140 microM, 182 microM, 225 microM and 375 microM. Sulphinpyrazone inhibited tolbutamide hydroxylation with atypical kinetics. The in vitro data is in good agreement with in vivo drug interactions with tolbutamide. The data also confirm that tolbutamide hydroxylation is not associated with the cytochromes P-450 responsible for methylxanthine metabolism or with the form responsible for the polymorphic oxidation of debrisoquine.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008617 Mephenytoin An anticonvulsant effective in tonic-clonic epilepsy (EPILEPSY, TONIC-CLONIC). It may cause blood dyscrasias. Methoin,Methyl Phenetoin,5-Ethyl-3-Methyl-5-Phenylhydantoin,Mefenetoin,Mesantoin,Phenantoin,5 Ethyl 3 Methyl 5 Phenylhydantoin,Phenetoin, Methyl
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D013806 Theophylline A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3',5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. 1,3-Dimethylxanthine,3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione,Accurbron,Aerobin,Aerolate,Afonilum Retard,Aquaphyllin,Armophylline,Bronchoparat,Bronkodyl,Constant-T,Elixophyllin,Euphylong,Glycine Theophyllinate,Lodrane,Monospan,Nuelin,Nuelin S.A.,Quibron T-SR,Slo-Phyllin,Somophyllin-T,Sustaire,Synophylate,Theo Von Ct,Theo-24,Theo-Dur,Theobid,Theocin,Theoconfin Continuous,Theodur,Theolair,Theolix,Theon,Theonite,Theopek,Theophylline Anhydrous,Theophylline Sodium Glycinate,Theospan,Theostat,Theovent,Uniphyl,Uniphyllin,Uniphylline,1,3 Dimethylxanthine,Anhydrous, Theophylline,Constant T,ConstantT,Ct, Theo Von,Glycinate, Theophylline Sodium,Quibron T SR,Quibron TSR,Slo Phyllin,SloPhyllin,Sodium Glycinate, Theophylline,Somophyllin T,SomophyllinT,Theo 24,Theo Dur,Theo24,Theophyllinate, Glycine,Von Ct, Theo
D014044 Tolbutamide A sulphonylurea hypoglycemic agent with actions and uses similar to those of CHLORPROPAMIDE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p290) Apo-Tolbutamide,Artosin,Diabetol,Diaval,Dolipol,Orabet,Orinase,Rastinon,Tolbutamid R.A.N.
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
January 1990, Drug metabolism and disposition: the biological fate of chemicals,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
July 1974, Biochimica et biophysica acta,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
January 2000, Drug metabolism and disposition: the biological fate of chemicals,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
August 1985, Biochemical pharmacology,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
June 1972, La Nouvelle presse medicale,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
January 2001, Anesthesiology,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
August 1971, Chemico-biological interactions,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
July 1982, Plant physiology,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
February 1975, FEBS letters,
J O Miners, and K J Smith, and R A Robson, and M E McManus, and M E Veronese, and D J Birkett
March 2000, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!