Dissecting serotype-specific contributions to live oral cholera vaccine efficacy. 2021

Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115.

The O1 serogroup of Vibrio cholerae causes pandemic cholera and is divided into the Ogawa and Inaba serotypes. The O-antigen is V. cholerae's immunodominant antigen, and the two serotypes, which differ by the presence or absence of a terminally methylated O-antigen, likely influence development of immunity to cholera and oral cholera vaccines (OCVs). However, there is no consensus regarding the relative immunological potency of each serotype, in part because previous studies relied on genetically heterogeneous strains. Here, we engineered matched serotype variants of a live OCV candidate, HaitiV, and used a germfree mouse model to evaluate the immunogenicity and protective efficacy of each vaccine serotype. By combining vibriocidal antibody quantification with single- and mixed-strain infection assays, we found that all three HaitiV variants-InabaV, OgawaV, and HikoV (bivalent Inaba/Ogawa)-were immunogenic and protective. None of the vaccine serotypes were superior across both of these vaccine metrics, suggesting that the impact of O1-serotype variation in OCV design, although detectable, is subtle. However, all three live vaccines significantly outperformed formalin-killed HikoV, supporting the idea that live OCV usage will bolster current cholera control practices. The potency of OCVs was found to be challenge strain-dependent, emphasizing the importance of appropriate strain selection for cholera challenge studies. Our findings and experimental approaches will be valuable for guiding the development of live OCVs and oral vaccines for additional pathogens.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D005260 Female Females
D000071497 Immunogenicity, Vaccine The capacity of VACCINES to stimulate the ADAPTIVE IMMUNE RESPONSE to produce antibodies and antigen-specific T-CELL responses. It is typically measured in vaccinated individuals in observational studies setting. Antigenicity, Vaccine,Vaccine Antigenicity,Vaccine Immunogenicity
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014613 Vaccines, Attenuated Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity. Attenuated Vaccine,Vaccines, Live, Attenuated,Attenuated Vaccines,Vaccine, Attenuated
D014734 Vibrio cholerae The etiologic agent of CHOLERA. Bacillus cholerae,Bacillus cholerae-asiaticae,Liquidivibrio cholerae,Microspira comma,Pacinia cholerae-asiaticae,Spirillum cholerae,Spirillum cholerae-asiaticae,Vibrio albensis,Vibrio cholera,Vibrio cholerae-asiaticae,Vibrio comma
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D022121 Cholera Vaccines Vaccines or candidate vaccines used to prevent infection with VIBRIO CHOLERAE. The original cholera vaccine consisted of killed bacteria, but other kinds of vaccines now exist. Cholera Vaccine,Vaccine, Cholera,Vaccines, Cholera
D065288 Serogroup A set of variants within a species of microorganisms that are antigenically, closely related. With bacteria, a serogroup refers to a group that shares a common antigen. Serotype,Serovar,Serogroups,Serotypes,Serovars

Related Publications

Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
June 1997, Lancet (London, England),
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
January 1976, Developments in biological standardization,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
March 1971, Nature,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
June 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
December 2021, Vaccines,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
January 1968, Journal of bacteriology,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
October 2010, BMC biology,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
January 2020, Human vaccines & immunotherapeutics,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
March 2017, Expert review of vaccines,
Brandon Sit, and Bolutife Fakoya, and Ting Zhang, and Gabriel Billings, and Matthew K Waldor
May 2000, Vaccine,
Copied contents to your clipboard!