A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. 1988

G Sandström, and S Löfgren, and A Tärnvik
National Defense Research Institute, Umeå, Sweden.

The live vaccine strain (LVS) of Francisella tularensis is killed by human polymorphonuclear leukocytes as a result of strictly oxygen-dependent mechanisms (S. Löfgren, A. Tärnvik, M. Thore, and J. Carlsson, Infect. Immun. 43:730-734, 1984). We now report that a capsule-deficient (Cap-) mutant of LVS survives in the leukocytes. In contrast to the encapsulated parent strain, the Cap- mutant was avirulent in mice and was susceptible to the bactericidal effect of nonimmune human serum. The mutant was killed by serum as a result of activation of the classical pathway of complement by naturally occurring immunoglobulin M. This killing by serum was mitigated by the presence of human polymorphonuclear leukocytes. After opsonization in complement component C5-deficient nonimmune serum, the Cap- mutant was ingested and survived in the leukocytes. Under these conditions, the parent strain was killed. The leukocytes responded to both the parent and the Cap- strain with a very low chemiluminescent response. Only the response to the parent strain was inhibited by superoxide dismutase. When the Cap- mutant was opsonized with immunoglobulin G, it induced a higher and superoxide dismutase-inhibitable chemiluminescent response and was killed by the leukocytes. In conclusion, the capsule of F. tularensis LVS seemed to protect this organism against the bactericidal effect of serum. When deprived of the capsule, the organism failed to induce an antimicrobial response in polymorphonuclear leukocytes and survived in the leukocytes. Survival in phagocytes is a key characteristic of intracellular parasites. The Cap- mutant of F. tularensis may become a useful tool in experiments to explain the differences between pathways of ingestion of intracellular parasites, evidenced by the death or survival of the parasite.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009895 Opsonin Proteins Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate. Opsonin,Opsonin Protein,Opsonins,Protein, Opsonin
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D001770 Blood Bactericidal Activity The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST. Activities, Blood Bactericidal,Activity, Blood Bactericidal,Bactericidal Activities, Blood,Bactericidal Activity, Blood,Blood Bactericidal Activities
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3

Related Publications

G Sandström, and S Löfgren, and A Tärnvik
February 1983, Infection and immunity,
G Sandström, and S Löfgren, and A Tärnvik
January 2013, BMC microbiology,
G Sandström, and S Löfgren, and A Tärnvik
September 2007, Microbiology (Reading, England),
G Sandström, and S Löfgren, and A Tärnvik
October 2018, Pathogens and disease,
G Sandström, and S Löfgren, and A Tärnvik
January 1995, Infection and immunity,
G Sandström, and S Löfgren, and A Tärnvik
November 2004, Applied and environmental microbiology,
G Sandström, and S Löfgren, and A Tärnvik
December 2006, Journal of leukocyte biology,
G Sandström, and S Löfgren, and A Tärnvik
June 2006, Infection and immunity,
G Sandström, and S Löfgren, and A Tärnvik
October 1992, FEMS microbiology immunology,
Copied contents to your clipboard!