Fluorescent labeling of extracellular vesicles. 2020

Mehdi Dehghani, and Thomas R Gaborski
Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, United States; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.

Fluorescent labeling of extracellular vesicles (EVs) enables studying their uptake and influence on individual cells, biodistribution as well as facilitates their characterization using high-resolution flow cytometry at a single EV level. Here we describe the importance of fluorescent labeling, the available fluorescent dyes and labeling approaches, the characteristics of an ideal dye, and the available techniques for post-labeling purification. We discuss the importance of preserving the size of EVs for uptake, biodistribution, and characterization studies and focus on the effect of common lipophilic PKH and luminal CFSE dyes on the size of EVs. Lastly, we present an example protocol for luminal labeling of EVs and characterization of the effect of labeling on the size of EVs using nanoparticles tracking analysis (NTA).

UI MeSH Term Description Entries
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000067128 Extracellular Vesicles Membrane limited structures derived from cell membranes and cytoplasmic material, and released into EXTRACELLULAR SPACE. They circulate through the EXTRACELLULAR FLUID and through the peripheral blood in the MICROVASCULATURE where cells, much larger, cannot, thereby affecting a variety of intercellular communication processes. Apoptotic Bodies,Exovesicles,Apoptotic Body,Bodies, Apoptotic,Body, Apoptotic,Exovesicle,Extracellular Vesicle,Vesicle, Extracellular,Vesicles, Extracellular
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle

Related Publications

Mehdi Dehghani, and Thomas R Gaborski
January 2022, Methods in molecular biology (Clifton, N.J.),
Mehdi Dehghani, and Thomas R Gaborski
June 2022, Bio-protocol,
Mehdi Dehghani, and Thomas R Gaborski
September 2018, International journal of pharmaceutics,
Mehdi Dehghani, and Thomas R Gaborski
December 2020, Advanced biosystems,
Mehdi Dehghani, and Thomas R Gaborski
May 2017, Scientific reports,
Mehdi Dehghani, and Thomas R Gaborski
July 2020, ACS applied nano materials,
Mehdi Dehghani, and Thomas R Gaborski
January 2022, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!