Staphylococcal Enterotoxin Superantigens Induce Prophylactic Antiviral Activity Against Encephalomyocarditis Virus In Vivo and In Vitro. 2021

Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA.

The staphylococcal enterotoxins (SEs) are classified as superantigens due to their potent stimulation of the immune system resulting in T cell activation and prodigious cytokine production and toxicity. This study examined the ability of superantigens to induce prophylactic antiviral activity in vivo and in vitro and evaluated potential superantigen mimetic peptides. Prophylactic treatment of mice in vivo with intraperitoneal injections of SE superantigens SEA and SEB (both at 20 μg/day for 3 days) prevented encephalomyocarditis virus (EMCV)-induced lethality in 100% and 80% of mice, respectively, as compared with control saline-treated groups in which EMCV was lethal to all mice. Furthermore, SEA (2 μg/mL) and SEB (1 μg/mL) induced antiviral activity in mouse splenocytes to produce an antiviral factor since their supernatant prevented EMCV lysis of L929 cells in tissue culture. It was found that superantigens do not directly prevent EMCV infection, but rather indirectly through inducing interferon gamma (IFNγ) production in cells as the antiviral factor. Evaluation of various superantigen mimetic peptides showed that one peptide (SEA3) had superantigen-like activity by inducing IFNγ production in cells but without the cellular proliferation, as associated with superantigens. However, the induction of IFNγ activation by the SEA3 peptide was not as pronounced, and took a much higher peptide concentration, when compared with the parent superantigen. If the negative side effects of superantigens can be eliminated, their beneficial properties can be harnessed for prophylactic treatment of viral infections and other pathologies requiring a robust immune response.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D004686 Encephalomyocarditis virus The type species of CARDIOVIRUS causing encephalomyelitis and myocarditis in rodents, pigs, and monkeys. Infection in man has been reported with CNS involvement but without myocarditis. EMCV
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018089 Superantigens Microbial antigens that have in common an extremely potent activating effect on T-cells that bear a specific variable region. Superantigens cross-link the variable region with class II MHC proteins regardless of the peptide binding in the T-cell receptor's pocket. The result is a transient expansion and subsequent death and anergy of the T-cells with the appropriate variable regions. Superantigen

Related Publications

Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
December 1991, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
September 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
August 1985, Antiviral research,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
July 2020, Virology,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
June 2024, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
January 2023, Frontiers in veterinary science,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
January 2009, Archives of virology,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
April 2001, Antimicrobial agents and chemotherapy,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
January 1980, Archives of virology,
Mustafa G Mujtaba, and Howard M Johnson, and Jordan M Parrish
March 2009, The Journal of general virology,
Copied contents to your clipboard!