Subunit interaction sites between the regulatory and catalytic subunits of cAMP-dependent protein kinase. Identification of a specific interchain disulfide bond. 1988

E A First, and J Bubis, and S S Taylor
Department of Chemistry, University of California, San Diego, La Jolla 92093.

The catalytic (C) subunit and the type II regulatory (RII) subunit of cAMP-dependent protein kinase can be cross-linked by interchain disulfide bonding. This disulfide bond can be catalyzed by cupric phenanthroline and also can be generated by a disulfide interchange using either RII-subunit or C-subunit that has been modified with either 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-4(azidophenylthio)phthalimide (APTP). When the 2 cysteine residues of the C-subunit are reacted with DTNB prior to incubation with the RII-subunit, interchain disulfide bonding occurs. Similar observations are seen with C-subunit that had been modified with APTP. Interchain disulfide bonds also form when the RII-subunit is modified with DTNB prior to incubation with the C-subunit. The presence of cAMP facilitates this cross-linking while autophosphorylation of the RII-subunit retards the rate at which the interchain disulfide bond forms. Interchain disulfide bonds also form spontaneously when the RII-subunit and the C-subunit are dialyzed at pH 8.0 in the absence of reducing agents. The specific amino acid residues that participate in intersubunit disulfide bonding have been identified as Cys-97 in the RII-subunit and Cys-199 in the C-subunit. Based on the sequence homologies of the RII-subunit with other kinase substrates and on the proximity of Cys-97 to the catalytic site, a model is proposed in which the autophosphorylation site of the RII-subunit occupies the substrate-binding site in the holoenzyme. The model also proposes that this same site may be occupied by the region flanking Cys-199 in the C-subunit when the C-subunit is dissociated.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010797 Phthalimides The imide of phthalic acids.
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004228 Dithionitrobenzoic Acid A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate. 5,5'-Dithiobis(2-nitrobenzoic Acid),DTNB,Ellman's Reagent,5,5'-Dithiobis(nitrobenzoate),Acid, Dithionitrobenzoic,Ellman Reagent,Ellmans Reagent,Reagent, Ellman's
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide

Related Publications

E A First, and J Bubis, and S S Taylor
March 1982, The Journal of biological chemistry,
E A First, and J Bubis, and S S Taylor
September 1997, Protein science : a publication of the Protein Society,
E A First, and J Bubis, and S S Taylor
September 1993, The Journal of biological chemistry,
E A First, and J Bubis, and S S Taylor
April 1984, The Journal of biological chemistry,
E A First, and J Bubis, and S S Taylor
January 1983, Methods in enzymology,
E A First, and J Bubis, and S S Taylor
February 1980, The Journal of biological chemistry,
Copied contents to your clipboard!