Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the C1 adrenergic cell group. 1988

S F Morrison, and T A Milner, and D J Reis
Department of Neurology, Cornell University Medical College, New York, New York 10021.

Neurons projecting from the rostral ventrolateral medulla (RVL) to the spinal cord were antidromically identified in rats anesthetized with urethane, paralyzed, and ventilated. The sites of lowest antidromic threshold were concentrated in the intermediolateral nucleus (IML). Their axonal conduction velocities were distributed bimodally, with the mean of the rapidly conducting fibers (greater than 1 m/sec) being 3.1 +/- 0.1 m/sec (n = 105), and of the slower axons being 0.8 +/- 0.03 m/sec (n = 25). Single-shock electrical stimulation of RVL elicited 2 bursts of excitation in splanchnic sympathetic nerve activity (SNA), which resulted from activation of 2 descending pathways with conduction velocities comparable to those of antidromically excited RVL-spinal neurons. The probability of discharge of RVL-spinal cells was synchronized both with the cardiac-related bursts in SNA with functional baroreceptor reflexes and with the free-running 2-6 Hz bursts in SNA following baroreceptor afferent denervation. On the average, their spontaneous discharges occurred 67 +/- 2 msec (n = 31) prior to the peak of the spontaneous bursts in splanchnic SNA. This time corresponded to the latency to the peak of the early excitatory potential in splanchnic SNA following electrical stimulation of RVL. Baroreceptor reflex activation inhibited RVL-spinal neurons. The recording sites of RVL-spinal vasomotor neurons were consistently located within 100 micron of cell bodies (C1 neurons) immunoreactive for the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT). Ultrastructural analysis of the lateral funiculus of the cervical and thoracic spinal cord demonstrated PNMT immunoreactivity within myelinated (0.6-2.1 micron diameter) and unmyelinated (0.1-0.8 micron diameter) axons. Estimated conduction velocities of these fibers were comparable to the antidromic conduction velocities of the rapidly and slowly conducting populations of RVL-spinal vasomotor neurons. We conclude that in rat, the discharge of RVL-spinal vasomotor neurons strongly influences SNA: the baroreceptor-mediated inhibition of these neurons is reflected in the cardiac locking of SNA, while, in the absence of baroreceptor input, the synchronous discharge of RVL-spinal neurons maintains a free-running 2-6 Hz bursting pattern in SNA. RVL-spinal neurons are located within, and may be elements of, the C1 adrenergic cell group, and they provide a sympathoexcitatory drive to neurons in the IML over rapidly and slowly conducting pathways that correspond to myelinated and unmyelinated spinal axons containing PNMT.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

S F Morrison, and T A Milner, and D J Reis
October 2003, Cellular and molecular neurobiology,
S F Morrison, and T A Milner, and D J Reis
September 2011, Cardiovascular research,
S F Morrison, and T A Milner, and D J Reis
January 1993, Journal of cardiovascular pharmacology,
S F Morrison, and T A Milner, and D J Reis
February 2012, Hypertension research : official journal of the Japanese Society of Hypertension,
S F Morrison, and T A Milner, and D J Reis
April 2008, Clinical and experimental pharmacology & physiology,
S F Morrison, and T A Milner, and D J Reis
December 1993, Hypertension (Dallas, Tex. : 1979),
S F Morrison, and T A Milner, and D J Reis
February 1991, Clinical and experimental pharmacology & physiology,
S F Morrison, and T A Milner, and D J Reis
August 1997, The American journal of physiology,
Copied contents to your clipboard!