Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals. 1988

S M Audigier, and J K Wang, and P Greengard
Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021.

Synaptosomes, purified from rat cerebral cortex, were prelabeled with [3H]inositol to study phosphatidylinositol turnover in nerve terminals. Labeled synaptosomes were either depolarized with 40 mM K+ or exposed to carbamoylcholine (carbachol). K+ depolarization increased the level of inositol phosphates in a time-dependent manner. The inositol trisphosphate concentration increased rapidly and transiently, reaching maximum (250% of control) in less than 3 sec and returning to near basal levels by 30 sec. The inositol bisphosphate level also increased rapidly, but its elevated level (220% of control) was sustained during continued depolarization. The elevated level of inositol bisphosphate was reversed upon repolarization of the synaptosomes. The level of inositol monophosphate increased slowly to 120-130% of control. These effects of K+ depolarization depended on the presence of Ca2+ in the incubation medium. Carbachol stimulated the turnover of phosphatidylinositol in a dose- and time-dependent manner. The level of inositol trisphosphate increased only slightly (120-130% of control) during carbachol stimulation. The level of inositol bisphosphate increased to 210% of control, and this maximal response was seen from 15 to 60 min. Accumulation of inositol monophosphate (250% of control) was larger than that of inositol bisphosphate, but its time course was slower. Atropine and pirenzepine inhibited the carbachol effect with high affinities of 0.8 nM and 16 nM, respectively, indicating that the effect of carbachol was mediated by activation of a M1 muscarinic receptor. Incubation of synaptosomes in Ca2+-free buffer reduced the response to carbachol by 30%, and addition of EGTA abolished it. These data show that both Ca2+ influx and M1 muscarinic receptor activation stimulate phospholipase C activity in synaptosomes, suggesting that phosphatidylinositol turnover may be involved in regulating neurotransmitter release from nerve terminals.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical

Related Publications

S M Audigier, and J K Wang, and P Greengard
October 1990, Brain research,
S M Audigier, and J K Wang, and P Greengard
August 1986, Biochemical and biophysical research communications,
S M Audigier, and J K Wang, and P Greengard
January 1991, Annals of the New York Academy of Sciences,
S M Audigier, and J K Wang, and P Greengard
June 1967, Life sciences,
S M Audigier, and J K Wang, and P Greengard
January 1995, Anesthesiology,
S M Audigier, and J K Wang, and P Greengard
January 1988, Peptides,
S M Audigier, and J K Wang, and P Greengard
January 1995, Advances in pharmacology (San Diego, Calif.),
S M Audigier, and J K Wang, and P Greengard
September 1990, Brain research,
S M Audigier, and J K Wang, and P Greengard
January 1999, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!