Thyroid hormones inhibit the Ca2+ calmodulin-induced activation of myosin light chain kinase. 1988

M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
Department of Molecular and Cellular Pharmacology, Mie University School of Medicine, Japan.

L-Thyroxine (T4) and L-triiodothyronine (T3) specifically, inhibited myosin light chain kinase (MLC-kinase) from various tissues whereas inhibitory effects of T4 and T3 on other protein kinases such as protein kinase C, cAMP-dependent protein kinase, casein kinase I, casein kinase II and calmodulin kinase II were much weaker. T4 was a more potent inhibitor of MLC-kinase than T3. Kinetic studies showed that T4 behaved as a competitive inhibitor of MLC-kinase toward calmodulin (CaM) and that Ki value was 2.5 microM. The activity of the catalytic fragment of MLC-kinase, which is active without CaM, was not inhibited by T4. 125I-T4 gel overlay revealed that CaM did not bind T4 but MLC-kinase had 125I-T4 binding activity. These observations suggest that T4 binds at or near CaM binding domain of MLC-kinase and inhibits CaM-induced activation of MLC-kinase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
July 1984, European journal of biochemistry,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
June 2009, The Journal of physiology,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
April 1993, The Journal of biological chemistry,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
June 1996, Cell structure and function,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
January 1997, Advances in second messenger and phosphoprotein research,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
October 1988, Biochemical and biophysical research communications,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
November 1994, Canadian journal of physiology and pharmacology,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
August 2005, FEBS letters,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
February 2001, The Journal of biological chemistry,
M Hagiwara, and S Mamiya, and M Ochiai, and H Hidaka
January 1983, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!