Biochemical and immunochemical evidence for the induction of an ethanol-inducible cytochrome P-450 isozyme in male Syrian golden hamsters. 1988

G D McCoy, and D R Koop
Department of Environmental Health Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106.

The effects of ethanol and of phenobarbital pretreatment on hamster microsomal metabolism of aniline and p-nitrophenol have been investigated. Hydroxylation of both compounds was increased over 2-fold by ethanol pretreatment, whereas phenobarbital pretreatment had little effect on either activity. Ethanol pretreatment had no effect on the specific content of total cytochrome P-450, while phenobarbital pretreatment increased the specific content 1.6-fold. Comparison of the specific activities for aniline hydroxylation and p-nitrophenol hydroxylation of individual microsomal samples from control, ethanol-pretreated and phenobarbital-pretreated animals showed a high degree of correlation (r2 = 0.98) consistent with the involvement of the same site for catalysis of these two compounds. Antibody to rabbit ethanol-inducible cytochrome P-450 (isozyme 3a) inhibited over 80% of the aniline (high affinity) and p-nitrophenol hydroxylase activities of microsomes from ethanol-treated hamsters. A comparison of the antibody-inhibitable rates for both hydroxylase activities with microsomes from untreated, ethanol- or phenobarbital-pretreated hamsters suggested that an isozyme homologous to rabbit isozyme 3a (hamster cytochrome P-450alc) was induced in hamsters about 3.5-fold by ethanol and was unaffected by phenobarbital. The induction of hamster cytochrome P-450alc was confirmed by immunoblot analysis of hamster microsomes. A single protein with a molecular weight of approximately 54,000 was recognized by antibody to the rabbit isozyme. Quantification of the immunoblots demonstrated that the hamster isozyme was increased about 3-fold, in good agreement with the induction determined by a comparison of the antibody-inhibitable rates. The results indicated that, although there was no change in the total spectrally observable cytochrome P-450, there was a marked change in the distribution of the isozymes of cytochrome P-450, with an increase in the alcohol-inducible form after 28-day ethanol consumption by chow-fed hamsters. This isozyme can be readily monitored by either high-affinity aniline or p-nitrophenol hydroxylation or by Western immunoblot analysis and appears to be the ethanol-inducible form of cytochrome P-450 in hamsters.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations

Related Publications

G D McCoy, and D R Koop
April 1986, Molecular pharmacology,
G D McCoy, and D R Koop
April 1985, Biochemical and biophysical research communications,
G D McCoy, and D R Koop
November 1984, Archives of biochemistry and biophysics,
G D McCoy, and D R Koop
February 1987, Molecular pharmacology,
G D McCoy, and D R Koop
January 1990, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!