Regional membrane heterogeneity in premyelinated CNS axons: factors influencing the binding of sterol-specific probes. 1988

R D Fields, and S G Waxman
Department of Neurology, Yale University School of Medicine, New Haven, CT 06510.

Binding of the sterol-specific probe filipin to developing optic nerve axonal membrane is spatially heterogeneous prior to association of glial cells with the axons. Experiments were performed using different sterol binding probes (filipin, tomatin, and saponin), at different temperatures (4 degrees C, 23 degrees C, and 37 degrees C), after incubation in different ionic conditions (10 mM Ca2+, 10 mM EGTA, and 20 mM Mg2+), to examine factors that may be responsible for this membrane heterogeneity in rat optic nerve. The patchy pattern of filipin binding is apparent with each sterol-specific probe, even prior to glial ensheathment, and is retained when membrane fluidity is increased at higher temperatures. Increased Ca2+ concentration increased membrane stability, and increased Mg2+ reduced the patchiness of filipin binding. After tannic acid staining, regions of the cytoskeleton are seen associated with the membrane via filaments extending from microtubules to the membrane, preferentially in regions where filipin interaction with the membrane is inhibited. The non-uniform interaction of filipin with the axolemma suggests an underlying heterogeneity in the sterol composition and stability of the membrane. Heterogeneity of premyelinated axonal membrane may provide an important formative influence in the differentiation of axons to their mature morphology and function.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005372 Filipin A complex of polyene antibiotics obtained from Streptomyces filipinensis. Filipin III alters membrane function by interfering with membrane sterols, inhibits mitochondrial respiration, and is proposed as an antifungal agent. Filipins I, II, and IV are less important. Filipin III,Desoxylagosin,Filimarisin,Filipin I,Filipin II,Filipin IV,NSC-3364,U-5956,NSC 3364,NSC3364,U 5956,U5956
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013261 Sterols Steroids with a hydroxyl group at C-3 and most of the skeleton of cholestane. Additional carbon atoms may be present in the side chain. (IUPAC Steroid Nomenclature, 1987) Sterol

Related Publications

R D Fields, and S G Waxman
November 2009, Annals of neurology,
R D Fields, and S G Waxman
October 1974, Plant physiology,
R D Fields, and S G Waxman
February 2023, International journal of environmental research and public health,
R D Fields, and S G Waxman
January 1997, Methods in enzymology,
R D Fields, and S G Waxman
March 1989, Journal of neurobiology,
R D Fields, and S G Waxman
August 2015, Biochemistry,
R D Fields, and S G Waxman
November 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R D Fields, and S G Waxman
April 2004, Sheng li ke xue jin zhan [Progress in physiology],
Copied contents to your clipboard!