Cell cycle dependence of thyroid hormone nuclear receptors in cultured GC cells: relationship to nuclear matrix. 1988

M H Kumarasiri, and L E Shapiro, and M I Surks
Department of Medicine, Montefiore Hospital, Bronx, New York.

The DNA synthesis (S) phase of cultured GC cells, a clonal rat pituitary tumor cell line, is characterized by increases in nuclear receptors for T3 and glucocorticoid (G) hormones. However, this increased receptor abundance appears functionally dissociated from the GH gene since GH messenger RNA (mRNA) synthesis is decreased in S-phase cells. We have now examined a putative structural correlate of this dissociation by measuring the abundance of T3 and G receptors and the GH gene in the nuclear matrix (NM)/scaffold fraction. NM of control and S-phase cultures both contained 30-50% of G receptors. Thirty to 50% of T3 receptors were also localized to NM of asynchronous cultures, but T3 receptor abundance (femtomoles per 100 micrograms of protein) was significantly decreased in NM of S-phase cultures: Exp 1 (control, 140 +/- 6.2; S-phase, 56.5 +/- 0.8; Exp 2 (control, 170 +/- 12; S-phase, 105 +/- 2.4). Nuclear scaffolds were digested with restriction enzymes to solubilize DNA loop structures and probed with GH complementary DNA (cDNA) to examine the distribution of transcribed regions of the GH gene. EcoR1 digestion resulted in an 11 kilobase fragment including the reported regulatory sequences for T3 receptors. No specific differences in GH gene localization to nuclear scaffold were observed between asynchronous and S-phase cultures or in different hormonal states. Thus, GH gene localization to nuclear scaffolds was not correlated with changes in transcription induced by T3 and G hormones or position in the cell cycle. These studies suggest that decreased concentration of T3 receptors in the NM fraction of S-phase cultures may be a structural correlate for cell cycle regulation of T3 receptor function.

UI MeSH Term Description Entries
D007399 Interphase The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs). Interphases
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin

Related Publications

M H Kumarasiri, and L E Shapiro, and M I Surks
January 1986, Metabolism: clinical and experimental,
M H Kumarasiri, and L E Shapiro, and M I Surks
May 1984, The Journal of biological chemistry,
M H Kumarasiri, and L E Shapiro, and M I Surks
October 1991, The Journal of clinical investigation,
M H Kumarasiri, and L E Shapiro, and M I Surks
April 1987, Metabolism: clinical and experimental,
M H Kumarasiri, and L E Shapiro, and M I Surks
December 1990, The Journal of clinical investigation,
M H Kumarasiri, and L E Shapiro, and M I Surks
January 1985, The Netherlands journal of medicine,
M H Kumarasiri, and L E Shapiro, and M I Surks
August 1982, The Journal of biological chemistry,
M H Kumarasiri, and L E Shapiro, and M I Surks
January 1978, Advances in experimental medicine and biology,
Copied contents to your clipboard!