Erythroid colony formation and effect of hemin in vitro in hereditary sideroblastic anemias. 1988

S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
Third Department of Medicine, Helsinki University, Finland.

Colony formation by erythroid burst-forming units (BFU-E) and erythroid colony-forming units (CFU-E) and the effect of hemin on colony growth was studied in vitro in three Finnish families with hereditary sideroblastic anemia (HSA). Defective activity of heme synthase has been demonstrated in family A and that of delta-aminolevulinic acid synthase in family B. No biochemical defect has been recognized so far in family C. CFU-E colony growth was defective in seven of the eight persons studied. The formation of BFU-E colonies was normal in family A and increased in family C, whereas of the two members of family B one showed normal and one decreased BFU-E colony growth. Hemin in 30-120 microM concentration increased significantly both BFU-E (p less than 0.01) and CFU-E (p less than 0.005) colony formation in family C. No effect was seen in family A, and in family B the only effect was normalization of the decreased BFU-E colony growth by the highest hemin concentration in one person. This study indicates that differences exist between families with HSA in erythroid colony formation and in response to hemin in vitro, but the low number of investigated members in each family does not permit a conclusive evaluation of the impact of the carrier versus patient status or of sex on the results.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D005260 Female Females
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline

Related Publications

S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
October 2009, Seminars in hematology,
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
January 1979, Experimental hematology,
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
December 1986, The American journal of the medical sciences,
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
November 1990, Experimental hematology,
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
March 1989, Blood,
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
February 1984, Wiener medizinische Wochenschrift (1946),
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
November 1976, Journal of cellular physiology,
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
December 1974, Blood,
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
July 1972, Polski tygodnik lekarski (Warsaw, Poland : 1960),
S Partanen, and A Pasanen, and E Juvonen, and R Tenhunen, and T Ruutu
May 1981, Endocrinology,
Copied contents to your clipboard!