Synthesis and intracellular processing of aminooligopeptidase by human intestine. 1988

T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
Gastroenterology Research Laboratory, Middleton Veterans Hospital, Madison, Wisconsin.

Aminooligopeptidase is an intrinsic glycoprotein of the brush border membrane important for hydrolysis of the oligopeptide products of intraluminal protein digestion. To study its synthesis and intracellular processing, we performed pulse-chase experiments using [35S]methionine to label proteins of cultured human intestinal explants obtained by endoscopic biopsy. Aminooligopeptidase was isolated by immune precipitation with a monoclonal antibody and its molecular size was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. A precursor of relative molecular weight (Mr) 127,000 appeared within 10 min of chase and appeared to begin conversion to an Mr 150,000 form (the size of brush border membrane aminooligopeptidase) within 60 min. To determine if the change in molecular size was the consequence of alterations in glycosylation, we studied the susceptibility of the two forms to endo-beta-N-acetylglucosaminidase H, which cleaves immature high-mannose N-linked carbohydrate chains, and to peptide: N4-(N-acetyl-beta-glucosaminyl)asparagine amidase, which cleaves both the high-mannose and complex N-linked carbohydrate chains. Only the early Mr 127,000 aminooligopeptidase was sensitive to endo-beta-N-acetylglucosaminidase H, suggesting that the larger form results from trimming of high-mannose cores and adding terminal sugars in the Golgi complex. Both forms were sensitive to peptide: N4-(N-acetyl-beta-glucosaminyl)asparagine amidase, generating an Mr 114,000 species. The kinetics of the synthesis and processing of aminooligopeptidase and sucrase-isomaltase were compared by immunoprecipitation of both proteins from the same tissue after separating the microvillous membrane from the remainder of the cellular membranes. Labeled aminooligopeptidase was present intracellularly in its mature form within 60 min and was detected exclusively in the brush border membrane by 90 min. Most of the labeled sucrase-isomaltase pool had not yet undergone complex glycosylation during the same period. These data demonstrate that although human intestinal aminooligopeptidase undergoes N-linked glycosylation like sucrase-isomaltase, the synthesis of aminooligopeptidase differs from that of sucrase-isomaltase in respect to the absence of a high-molecular-weight precursor and more rapid pre-Golgi processing.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D013394 Sucrase-Isomaltase Complex An enzyme complex found in the brush border membranes of the small intestine. It is believed to be an enzyme complex with different catalytic sites. Its absence is manifested by an inherited disease called sucrase-isomaltase deficiency. Sucrase Isomaltase Complex,Complex, Sucrase Isomaltase,Complex, Sucrase-Isomaltase,Isomaltase Complex, Sucrase
D018826 CD13 Antigens Zinc-binding metalloproteases that are members of the type II integral membrane metalloproteases. They are expressed by GRANULOCYTES; MONOCYTES; and their precursors as well as by various non-hematopoietic cells. They release an N-terminal amino acid from a peptide, amide or arylamide. ANPEP Protein,Aminopeptidase M,Aminopeptidase N,Antigens, CD13,Membrane Alanyl Aminopeptidase,Alanine Aminopeptidase,Alanyl Aminopeptidase,Amino-oligopeptidase,Aminooligopeptidase,CD13 Antigen,Antigen, CD13,Protein, ANPEP

Related Publications

T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
October 1982, The Journal of biological chemistry,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
May 1984, The Journal of biological chemistry,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
January 2001, American journal of physiology. Gastrointestinal and liver physiology,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
December 1985, European journal of biochemistry,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
August 1978, Harefuah,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
May 1983, The Journal of biological chemistry,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
January 1983, Advances in enzyme regulation,
T Burke, and M Lloyd, and V Lorenzsonn, and W Olsen
January 1996, The Journal of biological chemistry,
Copied contents to your clipboard!