Beta-actinin: a capping protein at the pointed end of thin filaments in skeletal muscle. 1988

T Funatsu, and Y Asami, and S Ishiwata
Department of Physics, School of Science and Engineering, Waseda University, Tokyo.

We examined the function of beta-actinin as a pointed end capping protein of thin filaments in skeletal muscle. An improvement in preparing beta-actinin yielded purified beta-actinin which retained its activity for more than a week. Two-dimensional gel electrophoresis showed that the two subunits, beta I and beta II, of beta-actinin are, respectively, split into two to three components (isoforms) with different isoelectric points. Polyclonal antibody was raised by injecting such purified and undenatured chicken breast muscle beta-actinin composed of several components into a rabbit. Immuno-gold labeling examination with electron microscopy of an F-actin-beta-actinin complex decorated with HMM showed that 85% of bound gold particles was on the pointed end of actin filaments, while the remaining 15% was on the barbed end. This suggests that in beta-actinin preparation pointed end and barbed end capping proteins inevitably coexist. Immunofluorescence and immunoelectron microscopy directly showed that beta-actinin is located at the pointed end of thin filaments in myofibrils; it was also suggested that a capping protein having common antigenic determinants to beta-actinin is located at Z-line. Thus, the physiological function of beta-actinin as a pointed end capping protein was examined as follows: When beta-actinin was dissociated from the pointed end of thin filaments in an I-Z-I brush by using a high salt solution, thin filaments could be disassembled at the pointed ends at concentrations of exogenous actin lower than a critical value. At a physiological ionic strength, these salt-washed thin filaments gradually shortened at a constant rate of about 45 nm/h. Both the association and dissociation of monomeric actin at the pointed end were suppressed by the rebinding of exogenous beta-actinin. The main physiological role of beta-actinin is therefore to stabilize thin filaments in the sarcomere by preventing addition and removal of actin monomers at the pointed filament end.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000185 Actinin A protein factor that regulates the length of R-actin. It is chemically similar, but immunochemically distinguishable from actin. alpha-Actinin,Eu-Actinin,beta-Actinin,Eu Actinin,alpha Actinin,beta Actinin
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

T Funatsu, and Y Asami, and S Ishiwata
April 2010, The Journal of cell biology,
T Funatsu, and Y Asami, and S Ishiwata
December 1983, Journal of biochemistry,
T Funatsu, and Y Asami, and S Ishiwata
September 2020, PLoS biology,
T Funatsu, and Y Asami, and S Ishiwata
January 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
T Funatsu, and Y Asami, and S Ishiwata
September 2010, Journal of cell science,
T Funatsu, and Y Asami, and S Ishiwata
January 1993, The Journal of cell biology,
T Funatsu, and Y Asami, and S Ishiwata
June 1987, Journal of biochemistry,
T Funatsu, and Y Asami, and S Ishiwata
January 2001, The Journal of biological chemistry,
Copied contents to your clipboard!