Projections of the retinorecipient pretectal nuclei in the pigeon (Columba livia). 1988

P D Gamlin, and D H Cohen
Department of Neurobiology and Behavior, SUNY, Stony Brook 11794.

We have used anterograde autoradiographic and retrograde HRP techniques to investigate the efferent connections of the retinorecipient pretectal nuclei in the pigeon. In the accompanying paper we identified these nuclei in the pigeon as the nucleus lentiformis mesencephali--pars lateralis and pars medialis, the tectal gray, the area pretectalis, and pretectalis diffusus. Although there are reports of a few of the projections of these nuclei, they had not previously been the subject of a detailed study. We found that different cell types in the lentiformis mesencephali, pars medialis and the lentiformis mesencephali, pars lateralis have descending projections to different targets. These targets include the inferior olive, the cerebellum, the lateral pontine nucleus, the nucleus papillioformis, the nucleus of the basal optic root, the nucleus mesencephalicus profundus, pars ventralis, the nucleus principalis precommissuralis, and the stratum cellulare externum. We found that a few cells in the lentiformis mesencephali project to the medial pontine nucleus, but that a much heavier projection arises from the nucleus laminaris precommissuralis, which is medial to the nucleus lentiformis mesencephali, pars medialis. The tectal gray has predominantly ascending projections to the diencephalon. The nuclei that it projects to are the nucleus intercalatus thalami, the nucleus of the ventral supraoptic decussation, the nucleus posteroventralis, the ventral lateral geniculate nucleus, the nucleus dorsolateralis medialis, and the nucleus dorsolateralis anterior. The tectal gray also projects topographically to layers 4 and 8-13 of the optic tectum. Area pretectalis has both ascending and descending projections. It has ipsilateral ascending projections to the nucleus dorsolateralis anterior, pars magnocellularis, the nucleus lateralis anterior, and the nucleus ventrolateralis thalami. It has ipsilateral descending projections to the central gray, the nucleus of the basal optic root, pars dorsalis, the lateral pontine nucleus, and the deep layers of the optic tectum. It has contralateral projections to the area pretectalis, the nucleus Campi Foreli, the interstitial nucleus of Cajal, the nucleus of Darkschewitsch, the cerebellum, and the Edinger-Westphal nucleus. The efferent projections of pretectalis diffusus are limited. It projects contralaterally to the pretectalis diffusus, and ipsilaterally to the nucleus of the ventral supraoptic decussation, the lateral pons, and the cerebellum.4

UI MeSH Term Description Entries
D008297 Male Males
D010856 Columbidae Family in the order COLUMBIFORMES, comprised of pigeons or doves. They are BIRDS with short legs, stout bodies, small heads, and slender bills. Some sources call the smaller species doves and the larger pigeons, but the names are interchangeable. Columba livia,Doves,Pigeons,Domestic Pigeons,Feral Pigeons,Rock Doves,Rock Pigeons,Domestic Pigeon,Dove,Dove, Rock,Doves, Rock,Feral Pigeon,Pigeon,Pigeon, Domestic,Pigeon, Feral,Pigeon, Rock,Pigeons, Domestic,Pigeons, Feral,Pigeons, Rock,Rock Dove,Rock Pigeon
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005260 Female Females
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

P D Gamlin, and D H Cohen
April 2013, The European journal of neuroscience,
P D Gamlin, and D H Cohen
April 1991, The Journal of comparative neurology,
P D Gamlin, and D H Cohen
April 1999, The Journal of comparative neurology,
P D Gamlin, and D H Cohen
March 1990, The Journal of comparative neurology,
P D Gamlin, and D H Cohen
January 1973, Journal fur Hirnforschung,
P D Gamlin, and D H Cohen
May 1996, The Journal of comparative neurology,
P D Gamlin, and D H Cohen
September 1970, The Journal of comparative neurology,
P D Gamlin, and D H Cohen
October 1983, The Journal of comparative neurology,
P D Gamlin, and D H Cohen
March 2012, The Journal of comparative neurology,
P D Gamlin, and D H Cohen
September 1978, Physiology & behavior,
Copied contents to your clipboard!