Potential antitumor agents. 56. "Minimal" DNA-intercalating ligands as antitumor drugs: phenylquinoline-8-carboxamides. 1988

G J Atwell, and C D Bos, and B C Baguley, and W A Denny
Cancer Research Laboratory, University of Auckland School of Medicine, New Zealand.

A series of isomeric phenylquinoline-8-carboxamides have been synthesized and evaluated as antitumor agents. This configuration is close to the minimum chromophore required for intercalative binding, since the binding mode of the compounds is dependent on the presence and position of the phenyl ring. If the ring is appended at the 4- or 5-position, it cannot lie within the DNA-intercalation site, and the compounds do not intercalate as shown by both unwinding and helix extension assays. In contrast, the 2-, 3-, and 6-phenyl isomers (where the phenyl ring lies coplanar with the quinoline and in the intercalation site) bind by intercalation. Only those isomers that intercalate show in vivo antitumor activity, with the 2-phenyl derivative in particular possessing broad-spectrum activity in both leukemia and solid-tumor assays.

UI MeSH Term Description Entries
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D007941 Leukemia P388 An experimental lymphocytic leukemia originally induced in DBA/2 mice by painting with methylcholanthrene. P388D(1) Leukemia,P388, Leukemia
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D011804 Quinolines
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

G J Atwell, and C D Bos, and B C Baguley, and W A Denny
February 1989, Journal of medicinal chemistry,
G J Atwell, and C D Bos, and B C Baguley, and W A Denny
April 1988, Journal of medicinal chemistry,
G J Atwell, and C D Bos, and B C Baguley, and W A Denny
December 1987, Anti-cancer drug design,
G J Atwell, and C D Bos, and B C Baguley, and W A Denny
January 2011, European journal of medicinal chemistry,
G J Atwell, and C D Bos, and B C Baguley, and W A Denny
December 1980, Journal of medicinal chemistry,
G J Atwell, and C D Bos, and B C Baguley, and W A Denny
November 2012, European journal of medicinal chemistry,
Copied contents to your clipboard!