In vitro velocity and turbulence measurements in the vicinity of three new mechanical aortic heart valve prostheses: Björk-Shiley Monostrut, Omni-Carbon, and Duromedics. 1988

A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
Cardiovascular Fluid Mechanics Laboratory, School of Chemical Engineering, Georgia Institute of Technology, Atlanta 30332-0100.

The in vitro velocity and turbulent shear stress fields created by three new mechanical valve designs (size 27 mm) were studied in the aortic position under pulsatile flow conditions. The following valves were studied: Björk-Shiley Monostrut tilting disc, Omni-Carbon tilting disc, and Duromedics bileaflet. All three valve designs created low pressure gradients with effective orifice areas in the range of 3.10 to 3.90 cm2. Both tilting disc designs created major and minor orifice jets, which were asymmetric in size. The peak velocities of the major and minor orifice jets were, however, of the same magnitude (200 cm/sec). The Omni-Carbon valve created a more even flow distribution through the minor orifice compared with the Björk-Shiley design. Regions of stagnation/flow separation were observed immediately adjacent (ie, distal) to the minor orifice strut and the pivot guards of the Björk-Shiley and Omni-Carbon valve designs, respectively. The Duromedics valve created relatively centralized flow. However, a major portion of the flow occurred through the two lateral orifices. Regions of flow separation/stagnation were observed adjacent to the valve sewing ring in the area of the valve pivot (hinge) mechanism. All three valve designs did create elevated turbulent shear stresses, with peak values in the range of 1000 to 2000 dynes/cm2 and mean values in the range of 100 to 1000 dynes/cm2. Such elevated shear stresses could cause sublethal and/or lethal damage to cellular blood elements. In an overall analysis, these new-generation low-profile mechanical valves are hemodynamically comparable to the Medtronic Hall and St. Jude Medical mechanical valves and are superior to the older-generation mechanical valves. However, it is unlikely that these valve designs will eliminate the problems of thrombosis, thromboembolic complications, and hemolysis.

UI MeSH Term Description Entries
D011474 Prosthesis Design The plan and delineation of prostheses in general or a specific prosthesis. Design, Prosthesis,Designs, Prosthesis,Prosthesis Designs
D011673 Pulsatile Flow Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow. Flow, Pulsating,Perfusion, Pulsatile,Flow, Pulsatile,Flows, Pulsatile,Flows, Pulsating,Perfusions, Pulsatile,Pulsatile Flows,Pulsatile Perfusion,Pulsatile Perfusions,Pulsating Flow,Pulsating Flows
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D006350 Heart Valve Prosthesis A device that substitutes for a heart valve. It may be composed of biological material (BIOPROSTHESIS) and/or synthetic material. Prosthesis, Heart Valve,Cardiac Valve Prosthesis,Cardiac Valve Prostheses,Heart Valve Prostheses,Prostheses, Cardiac Valve,Prostheses, Heart Valve,Prosthesis, Cardiac Valve,Valve Prostheses, Cardiac,Valve Prostheses, Heart,Valve Prosthesis, Cardiac,Valve Prosthesis, Heart
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001021 Aortic Valve The valve between the left ventricle and the ascending aorta which prevents backflow into the left ventricle. Aortic Valves,Valve, Aortic,Valves, Aortic
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
April 1987, Journal of biomedical engineering,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
November 1985, Journal of the American College of Cardiology,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
January 1985, Life support systems : the journal of the European Society for Artificial Organs,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
January 1991, Archives des maladies du coeur et des vaisseaux,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
October 1980, Radiology,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
January 1993, Scandinavian journal of thoracic and cardiovascular surgery,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
March 1988, Revista espanola de cardiologia,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
June 1992, The Journal of thoracic and cardiovascular surgery,
A P Yoganathan, and H W Sung, and Y R Woo, and M Jones
January 1983, Life support systems : the journal of the European Society for Artificial Organs,
Copied contents to your clipboard!