Juxtapapillary Deep-Layer Microvasculature Dropout and Retinal Nerve Fiber Layer Thinning in Glaucoma. 2021

Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
From the Department of Ophthalmology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea.

We sought to characterize juxtapapillary (JP) and non-JP microvasculature dropout in patients with primary open-angle glaucoma and to compare their rate of retinal nerve fiber layer (RNFL) thinning. Retrospective cohort study. A total of 141 eyes with primary open-angle glaucoma with ≥4 serial optical coherence tomography (OCT) images after initial OCT angiography for ≥2 years were included. Based on OCT angiography imaging, the 3 groups were matched by age and visual field mean deviation: JP group (parapapillary deep-layer microvasculature dropout in contact with the optic disc boundary, n = 47), non-JP group (dropout not reaching the optic disc boundary, n = 47), and no-dropout group (lacking the dropout, n = 47). The RNFL thinning rate was compared among the 3 groups. The rate of RNFL thinning tended to be fastest in the JP group followed by the non-JP group and no-dropout group in all areas except the temporal and nasal sectors. Post hoc analysis revealed that the JP group had significantly faster RNFL thinning than did the no-dropout group in the global area and the inferotemporal and inferonasal sectors (P < .05). When subgroup analysis was performed for subjects in which the main sector of dropout was the inferotemporal sector, the JP group had significantly faster RNFL thinning than the other 2 groups in the corresponding inferotemporal sector (P < .001). Eyes with JP microvasculature dropout showed faster RNFL thinning than eyes without dropout. These findings suggest that deep-layer microvasculature dropout, especially in contact with the optic disc boundary, is associated with rapid glaucoma progression.

UI MeSH Term Description Entries
D007429 Intraocular Pressure The pressure of the fluids in the eye. Ocular Tension,Intraocular Pressures,Ocular Tensions,Pressure, Intraocular,Pressures, Intraocular,Tension, Ocular,Tensions, Ocular
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009898 Optic Disk The portion of the optic nerve seen in the fundus with the ophthalmoscope. It is formed by the meeting of all the retinal ganglion cell axons as they enter the optic nerve. Blind Spot,Optic Disc,Optic Nerve Head,Optic Papilla,Blind Spots,Disc, Optic,Disk, Optic,Head, Optic Nerve,Nerve Head, Optic,Optic Discs,Optic Disks,Optic Nerve Heads,Optic Papillas,Papilla, Optic,Papillas, Optic,Spot, Blind
D009901 Optic Nerve Diseases Conditions which produce injury or dysfunction of the second cranial or optic nerve, which is generally considered a component of the central nervous system. Damage to optic nerve fibers may occur at or near their origin in the retina, at the optic disk, or in the nerve, optic chiasm, optic tract, or lateral geniculate nuclei. Clinical manifestations may include decreased visual acuity and contrast sensitivity, impaired color vision, and an afferent pupillary defect. Cranial Nerve II Diseases,Foster-Kennedy Syndrome,Optic Disc Disorders,Optic Disk Disorders,Optic Neuropathy,Second Cranial Nerve Diseases,Cranial Nerve II Disorder,Neural-Optical Lesion,Disc Disorder, Optic,Disk Disorder, Optic,Disorder, Optic Disc,Foster Kennedy Syndrome,Lesion, Neural-Optical,Neural Optical Lesion,Neural-Optical Lesions,Neuropathy, Optic,Optic Disc Disorder,Optic Disk Disorder,Optic Nerve Disease,Optic Neuropathies,Syndrome, Foster-Kennedy
D002829 Choroid The thin, highly vascular membrane covering most of the posterior of the eye between the RETINA and SCLERA. Choriocapillaris,Haller Layer,Haller's Layer,Sattler Layer,Sattler's Layer,Choroids
D005260 Female Females
D005902 Glaucoma, Open-Angle Glaucoma in which the angle of the anterior chamber is open and the trabecular meshwork does not encroach on the base of the iris. Glaucoma Simplex,Glaucoma, Pigmentary,Glaucoma, Simple,Open-Angle Glaucoma,Chronic Primary Open Angle Glaucoma,Glaucoma, Compensated,Glaucoma, Compensative,Glaucoma, Open Angle,Glaucoma, Primary Open Angle,Glaucoma, Secondary Open Angle,Primary Open Angle Glaucoma,Secondary Open Angle Glaucoma,Compensated Glaucoma,Compensative Glaucoma,Open Angle Glaucoma,Open Angle Glaucomas,Open-Angle Glaucomas,Pigmentary Glaucoma,Simple Glaucoma,Simplex, Glaucoma,Simplices, Glaucoma
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
July 2019, JAMA ophthalmology,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
July 2018, Ophthalmology,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
September 2022, American journal of ophthalmology,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
May 2024, American journal of ophthalmology,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
May 2021, The British journal of ophthalmology,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
June 2020, Journal of glaucoma,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
April 2023, Scientific reports,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
August 2018, The British journal of ophthalmology,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
November 2023, Journal of glaucoma,
Ji Min Kwon, and Robert N Weinreb, and Linda M Zangwill, and Min Hee Suh
July 2014, Ophthalmology,
Copied contents to your clipboard!