Primary Prevention Implantable Cardioverter-Defibrillator Therapy in Heart Failure with Recovered Ejection Fraction. 2021

Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

Given recent advances in both pharmacologic and nonpharmacologic strategies for improving outcomes related to chronic systolic heart failure, heart failure with recovered ejection fraction (HFrecEF) is now recognized as a distinct clinical entity with increasing prevalence. In many patients who once had an indication for active implantable cardioverter-defibrillator (ICD) therapy, questions remain regarding the usefulness of this primary prevention strategy to protect against syncope and cardiac arrest after they have achieved myocardial recovery. Early, small studies provide convincing evidence for continued guideline-directed medical therapy (GDMT) in segments of the HFrecEF population to promote persistent left ventricular myocardial recovery. Retrospective data suggest that the risk of sudden cardiac death is lower, but still present, in HFrecEF as compared with HF with reduced ejection fraction, with reports of up to 5 appropriate ICD therapies delivered per 100 patient-years. The usefulness of continued ICD therapy is weighed against the unfavorable effects of this strategy, which include a cumulative risk of infection, inappropriate discharge, and patient-level anxiety. Historically, many surrogate measures for risk stratification have been explored, but few have demonstrated efficacy and widespread availability. We found that the available data to inform decisions surrounding the continued use of active ICD therapies in this population are incomplete, and more advanced tools such as genetic testing, evaluation of high-risk structural cardiomyopathies (such as noncompaction), and cardiac magnetic resonance imaging have emerged as vital in risk stratification. Clinicians and patients should engage in shared decision-making to evaluate the appropriateness of active ICD therapy for any given individual. In this article, we explore the definition of HFrecEF, data underlying continuation of guideline-directed medical therapy in patients who have achieved left ventricular ejection fraction recovery, the benefits and risks of active ICD therapy, and surrogate measures that may have a role in risk stratification.

UI MeSH Term Description Entries
D011322 Primary Prevention Specific practices for the prevention of disease or mental disorders in susceptible individuals or populations. These include HEALTH PROMOTION, including mental health; protective procedures, such as COMMUNICABLE DISEASE CONTROL; and monitoring and regulation of ENVIRONMENTAL POLLUTANTS. Primary prevention is to be distinguished from SECONDARY PREVENTION and TERTIARY PREVENTION. Prevention, Primary,Disease Prevention, Primary,Prevention, Primordial,Primordial Prevention,Disease Preventions, Primary,Preventions, Primordial,Primary Disease Prevention,Primary Disease Preventions,Primordial Preventions
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012189 Retrospective Studies Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons. Retrospective Study,Studies, Retrospective,Study, Retrospective
D012307 Risk Factors An aspect of personal behavior or lifestyle, environmental exposure, inborn or inherited characteristic, which, based on epidemiological evidence, is known to be associated with a health-related condition considered important to prevent. Health Correlates,Risk Factor Scores,Risk Scores,Social Risk Factors,Population at Risk,Populations at Risk,Correlates, Health,Factor, Risk,Factor, Social Risk,Factors, Social Risk,Risk Factor,Risk Factor Score,Risk Factor, Social,Risk Factors, Social,Risk Score,Score, Risk,Score, Risk Factor,Social Risk Factor
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D016277 Ventricular Function, Left The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance. Left Ventricular Function,Function, Left Ventricular,Functions, Left Ventricular,Left Ventricular Functions,Ventricular Functions, Left
D016757 Death, Sudden, Cardiac Unexpected rapid natural death due to cardiovascular collapse within one hour of initial symptoms. It is usually caused by the worsening of existing heart diseases. The sudden onset of symptoms, such as CHEST PAIN and CARDIAC ARRHYTHMIAS, particularly VENTRICULAR TACHYCARDIA, can lead to the loss of consciousness and cardiac arrest followed by biological death. (from Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 7th ed., 2005) Cardiac Sudden Death,Sudden Cardiac Death,Cardiac Arrest, Sudden,Sudden Cardiac Arrest,Arrest, Sudden Cardiac,Cardiac Arrests, Sudden,Cardiac Death, Sudden,Death, Cardiac Sudden,Death, Sudden Cardiac,Sudden Death, Cardiac
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes
D017147 Defibrillators, Implantable Implantable devices which continuously monitor the electrical activity of the heart and automatically detect and terminate ventricular tachycardia (TACHYCARDIA, VENTRICULAR) and VENTRICULAR FIBRILLATION. They consist of an impulse generator, batteries, and electrodes. Cardioverter-Defibrillators, Implantable,Implantable Cardioverter Defibrillator,Implantable Cardioverter-Defibrillators,Implantable Defibrillators,Cardioverter Defibrillator, Implantable,Cardioverter Defibrillators, Implantable,Cardioverter-Defibrillator, Implantable,Defibrillator, Implantable,Defibrillator, Implantable Cardioverter,Defibrillators, Implantable Cardioverter,Implantable Cardioverter Defibrillators,Implantable Cardioverter-Defibrillator,Implantable Defibrillator

Related Publications

Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
November 2018, Journal of general internal medicine,
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
September 2022, European journal of heart failure,
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
April 2013, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology,
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
February 2021, Journal of cardiovascular medicine (Hagerstown, Md.),
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
September 2009, Circulation,
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
February 2022, ESC heart failure,
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
August 2019, Clinical research in cardiology : official journal of the German Cardiac Society,
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
February 2022, Pacing and clinical electrophysiology : PACE,
Jayson R Baman, and Kaustubha D Patil, and Ankit N Medhekar, and Jane E Wilcox
September 2009, Current cardiology reports,
Copied contents to your clipboard!