Specificity and Selective Advantage of an Exclusion System in the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis. 2021

Kathleen P Davis, and Alan D Grossman
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Integrative and conjugative elements (ICEs) are mobile genetic elements capable of transferring their own and other DNA. They contribute to the spread of antibiotic resistance and other important traits for bacterial evolution. Exclusion is a mechanism used by many conjugative plasmids and a few ICEs to prevent their host cell from acquiring a second copy of the cognate element. ICEBs1 of Bacillus subtilis has an exclusion mechanism whereby the exclusion protein YddJ in a potential recipient inhibits the activity of the ICEBs1-encoded conjugation machinery in a potential donor. The target of YddJ-mediated exclusion is the conjugation protein ConG (a VirB6 homolog). Here, we defined the regions of YddJ and ConG that confer exclusion specificity and determined the importance of exclusion to host cells. Using chimeras that had parts of ConG from ICEBs1 and the closely related ICEBat1, we identified a putative extracellular loop of ConG that conferred specificity for exclusion by the cognate YddJ. Using chimeras of YddJ from ICEBs1 and ICEBat1, we identified two regions in YddJ needed for exclusion specificity. We also found that YddJ-mediated exclusion reduced the death of donor cells following conjugation into recipients. Donor death was dependent on the ability of transconjugants to themselves become donors and was reduced under osmoprotective conditions, indicating that death was likely due to alterations in the donor cell envelope caused by excessive conjugation. We postulate that elements that can have high frequencies of transfer likely evolved exclusion mechanisms to protect the host cells from excessive death.IMPORTANCE Horizontal gene transfer is a driving force in bacterial evolution, responsible for the spread of many traits, including antibiotic and heavy metal resistance. Conjugation, one type of horizontal gene transfer, involves DNA transfer from donor to recipient cells through conjugation machinery and direct cell-cell contact. Exclusion mechanisms allow conjugative elements to prevent their host from acquiring additional copies of the element and are highly specific, enabling hosts to acquire heterologous elements. We defined regions of the exclusion protein and its target in the conjugation machinery that convey high specificity of exclusion. We found that exclusion protects donors from cell death during periods of high transfer. This is likely important for the element to enter new populations of cells.

UI MeSH Term Description Entries
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D050296 Microbial Viability Ability of a microbe to survive under given conditions. This can also be related to a colony's ability to replicate. Bacterial Viability,Virus Viability,Bacteria Viability,Microbial Inactivation,Inactivation, Microbial,Viability, Bacteria,Viability, Bacterial,Viability, Microbial,Viability, Virus
D020071 Interspersed Repetitive Sequences Copies of transposable elements interspersed throughout the genome, some of which are still active and often referred to as "jumping genes". There are two classes of interspersed repetitive elements. Class I elements (or RETROELEMENTS - such as retrotransposons, retroviruses, LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS) transpose via reverse transcription of an RNA intermediate. Class II elements (or DNA TRANSPOSABLE ELEMENTS - such as transposons, Tn elements, insertion sequence elements and mobile gene cassettes of bacterial integrons) transpose directly from one site in the DNA to another. Dispersed Repetitive Sequences,Genes, Jumping,Interspersed Repetitive Elements,Jumping Genes,Mobile Genetic Elements,Repetitive Sequences, Dispersed,Repetitive Sequences, Interspersed,Elements, Mobile Genetic,Genetic Elements, Mobile,Dispersed Repetitive Sequence,Element, Interspersed Repetitive,Element, Mobile Genetic,Elements, Interspersed Repetitive,Gene, Jumping,Genetic Element, Mobile,Interspersed Repetitive Element,Interspersed Repetitive Sequence,Jumping Gene,Mobile Genetic Element,Repetitive Element, Interspersed,Repetitive Elements, Interspersed,Repetitive Sequence, Dispersed,Repetitive Sequence, Interspersed,Sequence, Dispersed Repetitive,Sequence, Interspersed Repetitive,Sequences, Dispersed Repetitive,Sequences, Interspersed Repetitive
D022761 Gene Transfer, Horizontal The naturally occurring transmission of genetic information between organisms, related or unrelated, circumventing parent-to-offspring transmission. Horizontal gene transfer may occur via a variety of naturally occurring processes such as GENETIC CONJUGATION; GENETIC TRANSDUCTION; and TRANSFECTION. It may result in a change of the recipient organism's genetic composition (TRANSFORMATION, GENETIC). Gene Transfer, Lateral,Horizontal Gene Transfer,Lateral Gene Transfer,Recombination, Interspecies,Recombination, Interspecific,Gene Transfers, Lateral,Interspecies Recombination,Interspecific Recombination,Lateral Gene Transfers

Related Publications

Kathleen P Davis, and Alan D Grossman
July 2016, Plasmid,
Kathleen P Davis, and Alan D Grossman
September 2018, mSphere,
Copied contents to your clipboard!