Clotting of bovine fibrinogen. Calcium binding to fibrin during clotting and its dependence on release of fibrinopeptide B. 1988

E Mihalyi
Department of Clinical Pathology, National Institutes of Health, Bethesda, Maryland 20892.

Polymerization of bovine fibrinogen acted upon by thrombin is accompanied by binding of Ca2+ and a concomitant decrease of the free Ca2+ concentration. The latter can be recorded by a Ca2+-selective electrode as a shift in the electrode potential. The shift shows marked dependence on the initial free Ca2+ concentration, being maximal at about 10(-4.1) M and decreasing sharply on either side of this. Thus, the effect is limited to the 10(-3)-10(-5) M free Ca2+ concentration range. From the initial and the final value of the electrode potential during a clotting experiment, the amount of Ca2+ bound to fibrinogen and fibrin, respectively, can be calculated. The difference between the two, plotted against free Ca2+ concentration, gives a bell-shaped curve. This indicates that the reason for the Ca2+ binding is a shift of the pK of some groups from a lower to higher value. The recordings can be used for evaluation of the kinetics of the Ca2+ uptake. However, they have to be corrected for the effect of the continuous shift in the free Ca2+ concentration during the experiment. The reaction does not follow simple kinetics, showing a lag period. Therefore, rates were estimated from inverse half-reaction times. Half-times of the corrected curves show that the reaction is first order with respect to thrombin. Moreover, the rate of Ca2+ uptake is identical with that of the conformational change seen in differential scanning calorimetry [Donovan, J.W., & Mihalyi, E. '1985) Biochemistry 24, 3434]. The inverse rate and the final corrected Ca2+ uptake increase linearly with the initial fibrinogen concentration. Concomitant estimates of fibrinopeptide A and B release showed that the Ca2+ uptake runs parallel to the release of fibrinopeptide B. Fibrinopeptide A was released largely during the lag period of the Ca2+ uptake. In agreement with this, clotting with Ancrod, an enzyme that liberates only fibrinopeptide A, was not accompanied by binding of Ca2+. Thus, polymerization is not sufficient for the Ca2+ uptake to occur; liberation of fibrinopeptide B seems to be obligatory. Further support for this was obtained with experiments with the polymerization inhibitor Gly-Pro-Arg-Pro. The tetrapeptide inhibits polymerization and also, proportional to this, release of fibrinopeptide B [Hurlet-Jensen, A., Cummins, H.Z., Nossel, H.L., & Liu, C.Y. (1982) Thromb. Res. 27, 419; Lewis, S.D., Shields, P.P., & Shafer, J.A. (1985) J. Biol. Chem. 260, 10192]. Calcium uptake was also depressed by the tetrapeptide in a way similar to its effect upon fibrinopeptide B release.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005337 Fibrin A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot. Antithrombin I
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005345 Fibrinopeptide B Two small peptide chains removed from the N-terminal segment of the beta chains of fibrinogen by the action of thrombin. Each peptide chain contains 20 amino acid residues. The removal of fibrinopeptides B is not required for coagulation. Fibrinopeptides B
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
Copied contents to your clipboard!