Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. 1988

L P Wackett, and L D Kwart, and D T Gibson
Center for Applied Microbiology, University of Texas, Austin 78712.

Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that the monooxygen insertion is mediated by an active-site process. Experiments with 3-[2H]indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases.

UI MeSH Term Description Entries
D007192 Indenes A family of fused-ring hydrocarbons isolated from coal tar that act as intermediates in various chemical reactions and are used in the production of coumarone-indene resins.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

L P Wackett, and L D Kwart, and D T Gibson
January 1990, Methods in enzymology,
L P Wackett, and L D Kwart, and D T Gibson
March 2014, Journal of bioscience and bioengineering,
L P Wackett, and L D Kwart, and D T Gibson
October 1989, Applied and environmental microbiology,
L P Wackett, and L D Kwart, and D T Gibson
December 1994, Applied and environmental microbiology,
L P Wackett, and L D Kwart, and D T Gibson
October 1989, Applied and environmental microbiology,
L P Wackett, and L D Kwart, and D T Gibson
May 1991, Applied and environmental microbiology,
L P Wackett, and L D Kwart, and D T Gibson
February 1985, The Journal of biological chemistry,
L P Wackett, and L D Kwart, and D T Gibson
July 1988, Applied and environmental microbiology,
Copied contents to your clipboard!