Interaction of Penicillium notatum phospholipase B with divalent cations. 1988

Y Takeuchi
Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma, Oklahoma City 73190.

The interaction between Penicillium notatum phospholipase B and divalent cations such as Ca2+ and Mg2+ was studied. When the purified enzyme, present at concentrations of submicrogram to microgram per ml, was incubated with submillimolar to millimolar concentrations of CaCl2 or MgCl2, the enzymatic activity was remarkably decreased (to no more than 30% of original activity, when the enzyme was incubated with 2 mM CaCl2 for 15 min). The inhibitory effect of divalent cations was reversible, since dialysis against a metal chelator, such as EDTA or EGTA, substantially restored the enzymatic activity. Atomic absorption analysis showed the purified enzyme molecule to be present in a complex with Ca2+ at a ratio approaching 1:1, and this Ca2+ binding was shown to be extremely tight, since repeated dialyses of the enzyme molecules against EDTA or EGTA could remove the divalent cations only in a gradual manner. During this process, the enzyme activity increased also gradually. The remnant fraction of tightly bound Ca2+ was released from the enzyme molecule after the denaturation of the enzyme by treatment with guanidine hydrochloride, and the apoenzyme recovered its substantial activity after removal of the denaturing agent by dialysis. On the other hand, the content of Mg2+ in the purified enzyme molecule was lower than that of Ca2+, and the association of Mg2+ with the enzyme was much weaker in comparison to that of Ca2+. Atomic absorption analysis of the enzyme exposed to exogenous Ca2+ showed a fast removal, by dialysis, of unbound and weakly bound divalent cation, followed by a gradual removal of endogenous Ca2+ and a concomitant increase of enzymatic activity, which are similar to data obtained for the purified enzyme. Results shown in this report suggest some regulatory roles of divalent cations, especially of Ca2+, in the enzymatic function of P. notatum phospholipse B.

UI MeSH Term Description Entries
D008245 Lysophospholipase An enzyme that catalyzes the hydrolysis of a single fatty acid ester bond in lysoglycerophosphatidates with the formation of glyceryl phosphatidates and a fatty acid. EC 3.1.1.5. Lecithinase B,Lysolecithinase,Phospholipase B,Lysolecithin-Lysolecithin Acyltransferase,Lysophospholipase A,Lysophospholipase A1,Lysophospholipase C,Lysophospholipase L2,Acyltransferase, Lysolecithin-Lysolecithin,L2, Lysophospholipase,Lysolecithin Lysolecithin Acyltransferase
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D010407 Penicillium A mitosporic Trichocomaceae fungal genus that develops fruiting organs resembling a broom. When identified, teleomorphs include EUPENICILLIUM and TALAROMYCES. Several species (but especially PENICILLIUM CHRYSOGENUM) are sources of the antibiotic penicillin. Penicilliums
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot

Related Publications

Y Takeuchi
January 1991, Methods in enzymology,
Y Takeuchi
January 2014, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
Y Takeuchi
March 1977, Journal of biochemistry,
Y Takeuchi
January 2015, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
Y Takeuchi
May 1984, Journal of biochemistry,
Y Takeuchi
April 1978, Biochimica et biophysica acta,
Y Takeuchi
January 1976, Biochemical Society transactions,
Copied contents to your clipboard!