Pterostilbene accelerates wound healing by modulating diabetes-induced estrogen receptor β suppression in hematopoietic stem cells. 2021

Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China.

BACKGROUND Delayed wound healing is one of the major complications of diabetes mellitus and is characterized by prolonged inflammation, delayed re-epithelialization and consistent oxidative stress, although the detailed mechanism remains unknown. In this study, we aimed to investigate the potential role and effect of pterostilbene (PTE) and hematopoietic stem cells (HSCs) on diabetic wound healing. METHODS Diabetic rats were used to measure the epigenetic changes in both HSCs and peripheral blood mononuclear cells (PBMCs). A cutaneous burn injury was induced in the rats and PTE-treated diabetic HSCs were transplanted for evaluation of wound healing. In addition, several biomedical parameters, including gene expression, oxidative stress, mitochondrial function and inflammation in macrophages, were also measured. RESULTS Our data showed that PTE had a much stronger effect than resveratrol on accelerating diabetic wound healing, likely because PTE can ameliorate diabetes-induced epigenetic changes to estrogen receptor β promoter in HSCs, while resveratrol cannot. Further investigation showed that bone marrow transplantation of PTE-treated diabetic HSCs restores diabetes-induced suppression of estrogen receptor β and its target genes, including nuclear respiratory factor-1 and superoxide dismutase 2, and protects against diabetes-induced oxidative stress, mitochondrial dysfunction and elevated pro-inflammatory cytokines in both PBMCs and macrophages, subsequently accelerating cutaneous wound healing. CONCLUSIONS HSC may play an important role in wound healing through transferring epigenetic modifications to subsequent PBMCs and macrophages by differentiation, while PTE accelerates diabetic wound healing by modulating diabetes-induced epigenetic changes in HSCs. Thus, PTE may be a novel therapeutic strategy for diabetic wound healing.

UI MeSH Term Description Entries

Related Publications

Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
November 2022, Advances in wound care,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
July 2023, Cardiovascular diabetology,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
December 2023, Molecular immunology,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
August 2023, Cardiovascular diabetology,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
December 2023, Nature communications,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
January 2018, Nature communications,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
May 2021, Aging,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
February 2024, Advanced science (Weinheim, Baden-Wurttemberg, Germany),
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
January 2022, Burns & trauma,
Weiguo Xie, and Xueqing Zhou, and Weigang Hu, and Zhigang Chu, and Qiongfang Ruan, and Haimou Zhang, and Min Li, and Hongyu Zhang, and Xiaodong Huang, and Paul Yao
June 2017, Journal of dermatological science,
Copied contents to your clipboard!