The tissue origin effect of extracellular vesicles on cartilage and bone regeneration. 2021

Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.

Direct implantation of mesenchymal stem cells (MSCs) for cartilage and bone tissue engineering faces challenges, such as immune rejection and loss of cellular viability or functionality. As nanoscale natural particles, exosomes or small extracellular vesicles (EVs) of MSCs have potential to circumvent these problems. It is significant to investigate the impact of the tissue origin of MSCs on the therapeutic bioactivity of their corresponding EVs for cartilage and bone regeneration. Here, rat MSCs isolated from the adipose, bone marrow, and synovium are cultured to obtain their corresponding EVs (ADSC-EVs, BMSC-EVs, and SMSC-EVs, respectively). The ADSC-EVs stimulate the migration, proliferation, and chondrogenic and osteogenic differentiation of BMSCs in vitro as well as cartilage and bone regeneration in a mouse model more than the BMSC-EVs or SMSC-EVs. Proteomics analysis reveals that the tissue origin contributes to the distinct protein profiles among the three types of EVs, which induced cartilage and bone regenerative capacities by potential mechanisms of regulating signaling pathways including focal adhesion, ECM-receptor interaction, actin cytoskeleton, cAMP, and PI3K-Akt signaling pathways. Consequently, these findings provide insight that the adipose may be a superior candidate in EV-based nanomedicine for cartilage and bone regeneration. STATEMENT OF SIGNIFICANCE: Extracelluar vesicles (EVs) of mesenchymal stem cells (MSCs) have been considered as a promising approach in cartilage and bone tissue engineering. In this study, for the first time, we investigated the tissue origin effect of EVs on chondrogenesis and osteogenesis of MSCs in vitro and in vivo. The results demonstrated that EVs of adipose-derived MSCs showed the most efficiency. Meanwhile, protein proteomics revealed the potential mechanisms. We provide a novel evidence that the adipose is a superior reservoir in EV-based nanotechnologies and biomaterials for cartilage and bone regeneration.

UI MeSH Term Description Entries
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D001861 Bone Regeneration Renewal or repair of lost bone tissue. It excludes BONY CALLUS formed after BONE FRACTURES but not yet replaced by hard bone. Osteoconduction,Bone Regenerations,Regeneration, Bone,Regenerations, Bone
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000067128 Extracellular Vesicles Membrane limited structures derived from cell membranes and cytoplasmic material, and released into EXTRACELLULAR SPACE. They circulate through the EXTRACELLULAR FLUID and through the peripheral blood in the MICROVASCULATURE where cells, much larger, cannot, thereby affecting a variety of intercellular communication processes. Apoptotic Bodies,Exovesicles,Apoptotic Body,Bodies, Apoptotic,Body, Apoptotic,Exovesicle,Extracellular Vesicle,Vesicle, Extracellular,Vesicles, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases
D020219 Chondrogenesis The formation of cartilage. This process is directed by CHONDROCYTES which continually divide and lay down matrix during development. It is sometimes a precursor to OSTEOGENESIS.

Related Publications

Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
January 2021, Frontiers in bioengineering and biotechnology,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
June 2021, Journal of cellular and molecular medicine,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
February 2023, Tissue engineering and regenerative medicine,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
January 2020, Biomicrofluidics,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
June 2020, Acta biomaterialia,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
August 2022, Tissue engineering. Part C, Methods,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
November 2016, European journal of pharmacology,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
June 2021, Biomedical materials (Bristol, England),
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
March 2013, Trends in biotechnology,
Qi Li, and Huilei Yu, and Muyang Sun, and Peng Yang, and Xiaoqing Hu, and Yingfang Ao, and Jin Cheng
December 2020, Bone,
Copied contents to your clipboard!