Clonal growth of normal human uroepithelial cells. 1988

L J Loretz, and C A Reznikoff
Department of Human Oncology and Environmental Toxicology Center, University of Wisconsin, Madison 53792.

We report the development of culture conditions which routinely support clonal growth of normal human uroepithelial cells (HUC). Secondary cultures seeded at clonal densities and grown under conditions described herein have a colony-forming efficiency (CFE) and colony size that will be useful for in vitro experiments. Primary cultures were dispersed to single cells and seeded in a supplemented Ham's F12 medium containing 1% fetal bovine serum together with 3 X 10(5) lethally irradiated Swiss 3T3 feeder cells on plastic substrates preequilibrated with F12 medium containing 5 or 10% serum. Using these conditions, the average CFE was 16.1 +/- 2.5%. A cloning efficiency of 4.9 +/- 1.5% was obtained under the same conditions in serum-free F12+ when supplemented with a mixture of trace elements or 0.1 mM ethanolamine. The epithelial nature of the cloned cells was confirmed by morphology and by positive immunofluorescent staining for human epithelial keratin proteins. To make this system useful for mutagenesis experiments, a clone of Swiss 3T3 feeder cells resistant to 5 micrograms/ml 6-thioguanine (6TG) was derived from the parental cell line. This 6-TG-resistant Swiss 3T3 clone supports HUC clonal growth with a CFE of 17.9 +/- 2.0% CFE. We also report clonal growth of HUC without feeder cells using supplemented MCDB 170 medium containing 70 micrograms/ml bovine pituitary extract. The average cloning efficiency using these conditions was 5.7 +/- 1.7%.

UI MeSH Term Description Entries
D010969 Plastics Polymeric materials (usually organic) of large molecular weight which can be shaped by flow. Plastic usually refers to the final product with fillers, plasticizers, pigments, and stabilizers included (versus the resin, the homogeneous polymeric starting material). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Plastic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014513 Ureter One of a pair of thick-walled tubes that transports urine from the KIDNEY PELVIS to the URINARY BLADDER. Ureters

Related Publications

L J Loretz, and C A Reznikoff
June 1981, Cancer research,
L J Loretz, and C A Reznikoff
October 1956, The Journal of experimental medicine,
L J Loretz, and C A Reznikoff
May 1985, International journal of cell cloning,
L J Loretz, and C A Reznikoff
January 1990, Advances in experimental medicine and biology,
L J Loretz, and C A Reznikoff
January 1981, Journal of surgical oncology,
L J Loretz, and C A Reznikoff
January 1999, Advances in experimental medicine and biology,
L J Loretz, and C A Reznikoff
September 2000, International journal of oncology,
L J Loretz, and C A Reznikoff
February 1982, Journal of cellular physiology,
Copied contents to your clipboard!