Discriminatory interaction of purified eukaryotic initiation factors 4F plus 4A with the 5' ends of reovirus messenger RNAs. 1988

T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
Department of Biology, Washington University, St. Louis, Missouri 63130.

The interaction of several reovirus mRNAs with cap-binding initiation factors has been investigated. Two quantitative experimental techniques have been applied to this question: (a) the rates of reaction of different mRNAs with tobacco acid pyrophosphatase and (b) the extent of cross-linking of different mRNAs to initiation factors in the presence and absence of ATP. The effects of ionic strength on these reactions have also been investigated. Our results demonstrate for the first time that the purified initiation factors interact differentially with purified reovirus mRNAs under competitive conditions and thus confirm earlier interpretations based on kinetic data. Comparison of the data from these studies with the translational behavior of the reovirus mRNAs, both in vitro and in vivo, has also led to specific predictions about features of these mRNAs that determine their competitive efficiencies. 1) Under ordinary ionic conditions, the steric accessibility of the m7G cap moiety of a reovirus mRNA appears to be a major determinant of its translation rate. 2) When the ionic strength is increased to supranormal levels, an additional feature, which may simply be the amount of secondary structure formed by sequences proximal to the cap, can become rate-limiting for several, but not all, of these mRNAs.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012087 Reoviridae A family of unenveloped RNA viruses with cubic symmetry. The twelve genera include ORTHOREOVIRUS; ORBIVIRUS; COLTIVIRUS; ROTAVIRUS; Aquareovirus, Cypovirus, Phytoreovirus, Fijivirus, Seadornavirus, Idnoreovirus, Mycoreovirus, and Oryzavirus. Aquareovirus,Cypovirus,Cytoplasmic Polyhedrosis Viruses,Fijivirus,Idnoreovirus,Mycoreovirus,Oryzavirus,Phytoreovirus,Reoviruses, Aquatic,Respiratory Enteric Orphan Viruses,Seadornavirus,Aquareoviruses,Aquatic Reovirus,Aquatic Reoviruses,Cypoviruses,Cytoplasmic Polyhedrosis Virus,Fijiviruses,Idnoreoviruses,Mycoreoviruses,Oryzaviruses,Phytoreoviruses,Polyhedrosis Virus, Cytoplasmic,Polyhedrosis Viruses, Cytoplasmic,Reovirus, Aquatic,Seadornaviruses
D012089 Mammalian orthoreovirus 3 A serotype of ORTHOREOVIRUS, MAMMALIAN causing serious pathology in laboratory rodents, characterized by diarrhea, oily coat, jaundice, and multiple organ involvement. Reovirus 3,Mammalian Reovirus 3,Reovirus Type 3,Reovirus 3, Mammalian
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
March 1993, The Journal of biological chemistry,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
January 1979, Methods in enzymology,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
November 1986, The Journal of biological chemistry,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
August 1990, Biochimica et biophysica acta,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
March 1990, Molecular and cellular biology,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
April 1992, The Journal of biological chemistry,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
June 2023, Frontiers of medicine,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
June 1977, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
July 1988, The Journal of biological chemistry,
T G Lawson, and M H Cladaras, and B K Ray, and K A Lee, and R D Abramson, and W C Merrick, and R E Thach
December 1985, Virology,
Copied contents to your clipboard!