Swimming in Aplysia brasiliana: identification of parapodial opener-phase and closer-phase neurons. 1988

D W Parsons, and H M Pinsker
Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77550-2772.

1. In freely behaving Aplysia brasiliana, spontaneous swimming in the laboratory occurred primarily in the dark hours of the day-night cycle. Suspending an intact animal above the substrate elicited continuous parapodial flapping with the same frequency and amplitude as spontaneous swimming. Parapodial flapping with decreased frequency and amplitude could still be elicited by suspending minimally dissected, but not more radically dissected, preparations. 2. In otherwise intact animals, severing the cerebropedal connective (CPC) bilaterally abolished suspended parapodial flapping, but normal flapping was elicited by tonic stimulation of the distal CPC. In minimally dissected preparations, tonic CPC stimulation elicited parapodial flapping, but with reduced frequency and amplitude. 3. During normal parapodial flapping, chronically implanted electrodes on parapodial nerves recorded the swimming motor program (SMP). The whole-nerve SMP consisted of rhythmic bursts of large-amplitude efferent units in phase with parapodial opening, with no observable activity during parapodial closing. By contrast, simultaneous electromyogram (EMG) recordings from antagonistic parapodial muscles showed antiphasic bursts of activity during opening and closing. The SMP was inhibited by touching food to the animals' lips. 4. Parapodial nerve backfills, using nickel chloride, labeled several cell clusters in the ipsilateral pedal ganglion. Two of these clusters were located caudally: one tightly clustered medial group had large cell bodies, and another, more distributed, lateral group had small cell bodies. The two clusters were identified in semi-intact preparations and isolated brains, using tonic CPC stimulation to elicit a fictive SMP recorded in parapodial nerves, and intracellular electrodes to characterize and stain individual cells. 5. The large parapodial opener-phase (POP) neurons were normally silent. At the onset of CPC stimulation, POP neurons depolarized and fired tonically, and then burst rhythmically in phase with each other, and one for one with large-amplitude axon spikes observed extracellularly in parapodial nerves during the fictive SMP. Intracellular firing of POP cells, singly or in pairs, never produced observable papapodial movements or one-for-one responses in parapodial muscles. Lucifer yellow-filled POP neurons showed a process (with a pronounced rostral loop) that gave off many short, fine neurites in the pedal neuropile before branching into two or three axons projecting into different parapodial nerves. 6. The smaller parapodial closer-phase (PCP) neurons normally discharged tonically at low frequencies.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D013550 Swimming An activity in which the body is propelled through water by specific movement of the arms and/or the legs. Swimming as propulsion through water by the movement of limbs, tail, or fins of animals is often studied as a form of PHYSICAL EXERTION or endurance.

Related Publications

D W Parsons, and H M Pinsker
October 1991, Journal of neurophysiology,
D W Parsons, and H M Pinsker
February 1980, The Journal of experimental biology,
D W Parsons, and H M Pinsker
September 1996, Journal of neurophysiology,
D W Parsons, and H M Pinsker
May 1978, Journal of neurophysiology,
Copied contents to your clipboard!