Modulation of calcium current and diverse K+ currents in identified Hermissenda neurons by small cardioactive peptide B. 1988

J Acosta-Urquidi
Friday Harbor Laboratories, Friday Harbor, Washington 98250.

The molluscan neuropeptides, small cardioactive peptides A and B (SCPA,B), are known to modulate the responses of many molluscan central and peripheral target cells (see review by Lloyd, 1986), but their full range of physiological actions remains unknown. External application of SCPB (1-10 microM) modified diverse ionic conductances in a set of giant identifiable neurons in the brain of the marine mollusk Hermissenda crassicornis. SCPB caused a transient depolarization and increased input resistance that enhanced or promoted cell firing. Under voltage-clamp, SCPB reduced a "background" residual current (IR), reduced early transient K+ current (IA), reduced a delayed K+ current (IK(V], and enhanced ICa, IBa, and a Ca2+-activated K+ current, IK(Ca). In tetraethylammonium chloride (TEA) saline, SCPB enhanced the amplitude and duration and reduced the threshold of evoked Ca and Ba spikes. Immunocytochemical staining techniques have localized an endogenous SCPB-like peptide in numerous somata and their neurites in the nervous system of Hermissenda (Longley and Longley, 1985; Watson and Willows, 1986). These data are consistent with a role for SCPB as a neurotransmitter/neurohormone modulator of neuronal excitability in Hermissenda. A neurotransmitter role for endogenous SCPs has been proposed for a synaptic pair of cultured neurons in the Aplysia buccal ganglion (Lloyd et al., 1986). SCPB has been implicated in the control of feeding motor output in Aplysia (Sossin et al., 1986) and Tritonia (Willows and Watson, 1986), and in the presynaptic facilitation of sensory neurons mediating the gill and siphon defensive withdrawal reflex in Aplysia (Abrams et al., 1984).

UI MeSH Term Description Entries
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias

Related Publications

J Acosta-Urquidi
November 1994, Journal of neurophysiology,
J Acosta-Urquidi
March 1996, Biochemical and biophysical research communications,
J Acosta-Urquidi
September 1997, The American journal of physiology,
J Acosta-Urquidi
December 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Acosta-Urquidi
February 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Acosta-Urquidi
January 1990, Annual review of physiology,
J Acosta-Urquidi
July 1982, Journal of the autonomic nervous system,
J Acosta-Urquidi
September 2001, Journal of neurophysiology,
Copied contents to your clipboard!