Ultrastructural reversible changes in fish neuromuscular junctions after chronic exercise. 1988

E Palacios-Prü, and C Colasante
Center of Electron Microscopy, University of Los Andes, Mérida, Venezuela.

Neuromuscular junctions (NJs) of fin muscles of teleostean fishes, Lebistes reticulatus, were ultrastructurally analyzed during 60 min of chronic exercise and a subsequent period of 90 min of induced recovery. NJs from 30-min-exercised fishes showed an almost complete depletion of synaptic vesicles (SVs), corresponding to 83% of SV consumption; 76% of axon terminals were branched at the end of this period. During the recovery period, it was possible to observe the reversibility of the changes induced by the exercise and the transitory events that lead to the reacquirement of the normal NJ morphology. After 15 min of rest, SV population increased to a value of 54.6 SVs/micron2 and the percentage of branched axons was 66.5%. At 60 min of recovery the number of SVs reached a value of 84.6 SVs/micron2. The SV population was fully reestablished at 80 min of rest, while the percentage of branched axons was found within normal ranges after 90 min of recovery. These results demonstrate that chronic exercise induced physiological depletion of NJ SVs and other axon terminal morphological changes, as well as that postexercise rest induces the reestablishment of the normal NJ morphology.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

E Palacios-Prü, and C Colasante
December 1970, Comptes rendus de l'Association des anatomistes,
E Palacios-Prü, and C Colasante
January 2000, Tsitologiia,
E Palacios-Prü, and C Colasante
January 1966, Annals of the New York Academy of Sciences,
E Palacios-Prü, and C Colasante
April 2012, European journal of histochemistry : EJH,
E Palacios-Prü, and C Colasante
June 1965, Comparative biochemistry and physiology,
E Palacios-Prü, and C Colasante
June 1976, Activitas nervosa superior,
E Palacios-Prü, and C Colasante
April 2016, Neuroscience,
E Palacios-Prü, and C Colasante
March 1992, Journal of applied physiology (Bethesda, Md. : 1985),
E Palacios-Prü, and C Colasante
August 1982, Journal of neurocytology,
E Palacios-Prü, and C Colasante
August 1975, Journal of neurocytology,
Copied contents to your clipboard!