Sex difference in the efferent inner hair cell synapses of the aging murine cochlea. 2021

Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address: anna.dondzillo@ucdenver.edu.

Efferent innervation of the inner hair cells changes over time. At an early age in mice, inner hair cells receive efferent feedback, which helps fine-tune tonotopic maps in the brainstem. In adulthood, inner hair cell efferent innervation wanes but increases again in older animals. It is not clear, however, whether age-related inner hair cell efferents increase along the entire range of the cochlear frequencies, or if this increase is restricted to a particular frequency-region, and whether this phenomenon occurs in both sexes. Age-related hearing loss, presbycusis, affects men and women differently. In mice, this difference is also strain specific. In aging black six mice, the auditory brainstem response thresholds increase in females earlier than in males. Here, we study age-related increase of the inner hair cell efferent innervation throughout the cochlea before hearing onset, in one month old and in ten months old and older male and female black six mice. We collected confocal images of immunostained inner hair cell efferents and quantified the labeled terminals in the entire cochlea using a machine learning algorithm. The overall number of the inner hair cell efferents in both sexes did not change significantly between age-groups. The distribution of the inner hair cell efferent innervation did not differ across frequencies in the cochlea. However, in females, inner hair cells received on average up to four times more efferent innervation than in males per each of the frequency regions tested. Sex differences were also found in the oldest age-group tested (≥ 10 months) where on average inner hair cells received six times more efferents in females than in males of matching age. Our findings emphasize the importance of including both sexes in sensorineural hearing loss research.

UI MeSH Term Description Entries
D008297 Male Males
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D005260 Female Females
D006199 Hair Cells, Auditory, Inner Auditory sensory cells of organ of Corti, usually placed in one row medially to the core of spongy bone (the modiolus). Inner hair cells are in fewer numbers than the OUTER AUDITORY HAIR CELLS, and their STEREOCILIA are approximately twice as thick as those of the outer hair cells. Auditory Hair Cell, Inner,Auditory Hair Cells, Inner,Cochlear Inner Hair Cell,Cochlear Inner Hair Cells,Hair Cell, Auditory, Inner,Inner Auditory Hair Cell,Inner Auditory Hair Cells,Inner Hair Cells,Cell, Inner Hair,Cells, Inner Hair,Hair Cell, Inner,Hair Cells, Inner,Inner Hair Cell
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
December 2012, Neurobiology of aging,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
October 1980, Hearing research,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
October 2020, The Journal of physiology,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
March 2019, Proceedings of the National Academy of Sciences of the United States of America,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
October 2011, Histochemistry and cell biology,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
January 2002, Advances in oto-rhino-laryngology,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
June 2017, The Journal of physiology,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
July 2005, The Journal of physiology,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
July 2000, The Journal of comparative neurology,
Anna Dondzillo, and Hiroki Takeda, and Samuel P Gubbels
December 1992, Hearing research,
Copied contents to your clipboard!