3D Organoid Culture Using Skin Keratinocytes Derived from Human Induced Pluripotent Stem Cells. 2022

Tomoko Miyake, and Mikio Shimada
Cosmetic R&D Department, Takara Belmont Corp., Tokyo, Japan.

The keratinocytes are predominant cells in the epidermis of the human skin. To assess the cellular response of the keratinocytes to the genotoxic stress, we derived the skin keratinocytes from human induced pluripotent stem cells (iPSCs). Furthermore, three-dimensional (3D) organoid culture method is powerful tool to analyze the organ and tissue response against the genotoxic stress. Here we describe the method of 3D organoid culture using skin keratinocytes derived from human iPSCs.

UI MeSH Term Description Entries
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D057026 Induced Pluripotent Stem Cells Cells from adult organisms that have been reprogrammed into a pluripotential state similar to that of EMBRYONIC STEM CELLS. Human Induced Pluripotent Stem Cell,IPS Cell,IPS Cells,Induced Pluripotent Stem Cell,Fibroblast-Derived IPS Cells,Fibroblast-Derived Induced Pluripotent Stem Cells,Human Induced Pluripotent Stem Cells,hiPSC,Cell, Fibroblast-Derived IPS,Cell, IPS,Cells, Fibroblast-Derived IPS,Cells, IPS,Fibroblast Derived IPS Cells,Fibroblast Derived Induced Pluripotent Stem Cells,Fibroblast-Derived IPS Cell,IPS Cell, Fibroblast-Derived,IPS Cells, Fibroblast-Derived

Related Publications

Tomoko Miyake, and Mikio Shimada
April 2019, Journal of visualized experiments : JoVE,
Tomoko Miyake, and Mikio Shimada
January 2022, Methods in molecular biology (Clifton, N.J.),
Tomoko Miyake, and Mikio Shimada
January 2024, Differentiation; research in biological diversity,
Tomoko Miyake, and Mikio Shimada
March 2018, International journal of molecular sciences,
Tomoko Miyake, and Mikio Shimada
August 2015, Journal of visualized experiments : JoVE,
Tomoko Miyake, and Mikio Shimada
February 2021, Cellular reprogramming,
Tomoko Miyake, and Mikio Shimada
October 2019, Journal of clinical medicine,
Copied contents to your clipboard!