Activation of detergent-solubilized rat hepatic 5'-iodothyronine deiodinase by NADPH and nonglutathione cytosolic components. 1988

K Sawada, and B C Hummel, and P G Walfish
Endocrine Division, Mount Sinai Hospital, Toronto, Ont., Canada.

An investigation was made of the possible role of the hepatic microsomal membrane in the activation of 5'-iodothyronine deiodinase (5'-DI) by a cytosolic activating system consisting of fraction A (relative mass (Mr) greater than 60,000), fraction B (Mr, approximately 13,000), and NADPH. Activation of 5'-DI in washed microsomes was compared with that of a microsome extract prepared by solubilization with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulphonate and further purification by fractional precipitation with polyethylene glycol and by DEAE-Sephacel chromatography. All 5'-DI preparations exhibited qualitatively similar dependence upon NADPH and cytosolic factors in fractions A and B for 5'-DI activation and were relatively unresponsive to NADH. Activation of solubilized preparations, unlike that of intact microsomes, was more readily inhibited by low concentrations of detergent and not inhibited by NADPH concentrations above 0.25 mM. Attempted purification of 5'-DI failed to produce a substantial increase in specific activity of the enzyme. It is concluded that, while glutathione-independent cytosolic factors and NADPH can activate 5'-DI in the absence of an intact microsomal membrane, some membrane constituents removed during solubilization and purification of the enzyme are required for maximal activation.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007453 Iodide Peroxidase A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8. Iodinase,Iodothyronine 5'-Deiodinase,Iodothyronine Deiodinase,Iodotyrosine Deiodase,Thyroid Peroxidase,Thyroxine 5'-Deiodinase,Thyroxine 5'-Monodeiodinase,5'-Deiodinase,Deiodinase,Iodotyrosine Deiodinase,Monodeiodinase,Reverse Triiodothyronine 5'-Deiodinase,T4-5'-Deiodinase,T4-Monodeiodinase,Tetraiodothyronine 5'-Deiodinase,Thyroxine Converting Enzyme,Triiodothyronine Deiodinase,5' Deiodinase,5'-Deiodinase, Iodothyronine,5'-Deiodinase, Reverse Triiodothyronine,5'-Deiodinase, Tetraiodothyronine,5'-Deiodinase, Thyroxine,5'-Monodeiodinase, Thyroxine,Deiodase, Iodotyrosine,Deiodinase, Iodothyronine,Deiodinase, Iodotyrosine,Deiodinase, Triiodothyronine,Enzyme, Thyroxine Converting,Iodothyronine 5' Deiodinase,Peroxidase, Iodide,Peroxidase, Thyroid,Reverse Triiodothyronine 5' Deiodinase,T4 5' Deiodinase,T4 Monodeiodinase,Tetraiodothyronine 5' Deiodinase,Thyroxine 5' Deiodinase,Thyroxine 5' Monodeiodinase,Triiodothyronine 5'-Deiodinase, Reverse
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine

Related Publications

K Sawada, and B C Hummel, and P G Walfish
January 1983, Biochimica et biophysica acta,
K Sawada, and B C Hummel, and P G Walfish
December 1990, The Biochemical journal,
K Sawada, and B C Hummel, and P G Walfish
October 1992, Biochemical and biophysical research communications,
K Sawada, and B C Hummel, and P G Walfish
March 1988, Molecular and cellular endocrinology,
K Sawada, and B C Hummel, and P G Walfish
October 1988, Journal of endocrinological investigation,
K Sawada, and B C Hummel, and P G Walfish
March 1989, The Biochemical journal,
K Sawada, and B C Hummel, and P G Walfish
February 1987, Biochemical and biophysical research communications,
K Sawada, and B C Hummel, and P G Walfish
September 1991, Endocrinology,
K Sawada, and B C Hummel, and P G Walfish
August 1986, Endocrinology,
Copied contents to your clipboard!