ATM and ATR Activation Through Crosstalk Between DNA Damage Response Pathways. 2021

Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
Department of Mathematics, The University of Utah, 155 Presidents Circle, Salt Lake City, UT, 84112, USA. fedak@math.utah.edu.

Cells losing the ability to self-regulate in response to damage are a hallmark of cancer. When a cell encounters damage, regulatory pathways estimate the severity of damage and promote repair, cell cycle arrest, or apoptosis. This decision-making process would be remarkable if it were based on the total amount of damage in the cell, but because damage detection pathways vary in the rate and intensity with which they promote pro-apoptotic factors, the cell's real challenge is to reconcile dissimilar signals. Crosstalk between repair pathways, crosstalk between pro-apoptotic signaling kinases, and signals induced by damage by-products complicate the process further. The cell's response to [Formula: see text] and UV radiation neatly illustrates this concept. While these forms of radiation produce lesions associated with two different pro-apoptotic signaling kinases, ATM and ATR, recent experiments show that ATM and ATR react to both forms of radiation. To simulate the pro-apoptotic signal induced by [Formula: see text] and UV radiation, we construct a mathematical model that includes three modes of crosstalk between ATM and ATR signaling pathways: positive feedback between ATM/ATR and repair proteins, ATM and ATR mutual upregulation, and changes in lesion topology induced by replication stress or repair. We calibrate the model to agree with 21 experimental claims about ATM and ATR crosstalk. We alter the model by adding or removing specific processes and then examine the effects of each process on ATM/ATR crosstalk by recording which claims the altered model violates. Not only is this the first mathematical model of ATM/ATR crosstalk, it provides a strong argument for treating pro-apoptotic signaling as a holistic effort rather than attributing it to a single dominant kinase.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D064007 Ataxia Telangiectasia Mutated Proteins A group of PROTEIN SERINE-THREONINE KINASES which activate critical signaling cascades in double strand breaks, APOPTOSIS, and GENOTOXIC STRESS such as ionizing ultraviolet A light, thereby acting as a DNA damage sensor. These proteins play a role in a wide range of signaling mechanisms in cell cycle control. A-T Protein,AT Mutated Protein,ATM Protein,A T Protein,Mutated Protein, AT,Protein, A-T,Protein, AT Mutated

Related Publications

Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
October 2014, Cellular and molecular life sciences : CMLS,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
January 2024, The FEBS journal,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
January 2004, World journal of gastroenterology,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
April 2007, Cell cycle (Georgetown, Tex.),
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
January 2004, DNA repair,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
January 2011, Cell death and differentiation,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
January 2010, Advances in cancer research,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
December 2006, Molecular and cellular biology,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
February 2021, Cells,
Elizabeth A Fedak, and Frederick R Adler, and Lisa M Abegglen, and Joshua D Schiffman
January 2022, International reviews of immunology,
Copied contents to your clipboard!