Half-scan artifact correction using generative adversarial network for dental CT. 2021

Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
R&D Center, Ray, Seongnam, South Korea.

Half-scan image reconstruction with Parker weighting can correct motion artifacts in dental CT images taken with a slow scan-based dental CT. Since the residual half-scan artifacts in the dental CT images appear much stronger than those in medical CT images, the artifacts often persist to the extent that they compromise the surface-rendered bone and tooth images computed from the dental CT images. We used a variation of generative adversarial network (GAN), so-called U-WGAN, to correct half-scan artifacts in dental CT images. For the generative network of GAN, we used a U-net structure of five stages to take advantage of its high computational efficiency. We trained the network using the Wasserstein loss function on the dental CT images of 40 patients. We tested the network with comparing its output images to the half-scan images corrected with other methods; Parker weighting and the other two popular GANs, that is, SRGAN and m-WGAN. For the quantitative comparison, we used the image quality metrics measuring the similarity of the corrected images to the full-scan images (reference images) and the noise level on the corrected images. We also compared the visual quality of the surface-rendered bone and tooth images. We observed that the proposed network outperformed Parker weighting and other GANs in all the image quality metrics. The computation time for the proposed network to process 336×336×336 3D images on a GPU-equipped personal computer was about 3 s, which was much shorter than those of SRGAN and m-WGAN, 50 s and 54 s, respectively.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D011877 Radionuclide Imaging The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph. Gamma Camera Imaging,Radioisotope Scanning,Scanning, Radioisotope,Scintigraphy,Scintiphotography,Imaging, Gamma Camera,Imaging, Radionuclide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography
D016477 Artifacts Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis. Artefacts,Artefact,Artifact
D021621 Imaging, Three-Dimensional The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object. Computer-Assisted Three-Dimensional Imaging,Imaging, Three-Dimensional, Computer Assisted,3-D Image,3-D Imaging,Computer-Generated 3D Imaging,Three-Dimensional Image,Three-Dimensional Imaging, Computer Generated,3 D Image,3 D Imaging,3-D Images,3-D Imagings,3D Imaging, Computer-Generated,3D Imagings, Computer-Generated,Computer Assisted Three Dimensional Imaging,Computer Generated 3D Imaging,Computer-Assisted Three-Dimensional Imagings,Computer-Generated 3D Imagings,Image, 3-D,Image, Three-Dimensional,Images, 3-D,Images, Three-Dimensional,Imaging, 3-D,Imaging, Computer-Assisted Three-Dimensional,Imaging, Computer-Generated 3D,Imaging, Three Dimensional,Imagings, 3-D,Imagings, Computer-Assisted Three-Dimensional,Imagings, Computer-Generated 3D,Imagings, Three-Dimensional,Three Dimensional Image,Three Dimensional Imaging, Computer Generated,Three-Dimensional Images,Three-Dimensional Imaging,Three-Dimensional Imaging, Computer-Assisted,Three-Dimensional Imagings,Three-Dimensional Imagings, Computer-Assisted

Related Publications

Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
April 2019, Medical physics,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
February 2021, Medical physics,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
March 2025, Optics express,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
April 2022, Journal of neuroscience methods,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
May 2022, Sensors (Basel, Switzerland),
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
January 2021, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
March 2020, Scientific reports,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
April 2022, Computer methods and programs in biomedicine,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
December 2021, IEEE transactions on medical imaging,
Mohamed A A Hegazy, and Myung Hye Cho, and Soo Yeol Lee
October 2018, Journal of digital imaging,
Copied contents to your clipboard!