Induction of gap junctions and brain endothelium-like tight junctions in cultured bovine endothelial cells: local control of cell specialization. 1988

R R Shivers, and F E Arthur, and P D Bowman
Department of Zoology, University of Western Ontario, London, Canada.

The final development of specializations by brain capillary endothelial cells, which characterize them as distinct from non-central nervous system (CNS) endothelium, is thought to be controlled by astrocyte-derived factors produced locally within the CNS. One specialization, the complex intercellular tight junction, which is unique to these cells and a major component of the blood-brain barrier, is controlled by an astrocyte-derived factor(s) and a "competent' extracellular matrix (Arthur et al., 1987). In order to test whether these factors can also trigger development of brain endothelium-like tight junctions in non-CNS microvessel endothelial cells, passaged bovine aorta and pulmonary artery endothelial cells were cultured in either 50% astrocyte-conditioned medium and 50% alpha-MEM, or in alpha-MEM alone (control). Only endothelial cells maintained in conditioned medium exhibited ultrastructural features indicative of synthesis and plasma membrane-insertion of junction components (Shivers et al., 1985). No assembled tight junctions were seen in these cells. Endothelial cells plated onto coverslips coated with ECM (Cedarlane Labs., Hornby, Ont.) and maintained in astrocyte-conditioned medium, displayed large, complex tight junctions and extraordinarily large gap junctions. Cells plated onto plastic or fibronectin-coated substrates possessed no tight or gap junctions. Results of this study show that CNS astrocytes produce a soluble factor(s) that promotes synthesis and insertion of tight junction components in non-CNS endothelial cells. Moreover, an intact, endothelial-derived extracellular matrix is required for assembly of tight junctions to complete development of this brain capillary-like specialization. This study confirms the notions that: a) the final fine-tuning of cell differentiation is under local control, and b) that endothelial cells in general do not express their final destination-specific differentiated features until those features are induced by local environment-produced conditions.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings

Related Publications

R R Shivers, and F E Arthur, and P D Bowman
October 1994, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
R R Shivers, and F E Arthur, and P D Bowman
August 1996, The American journal of physiology,
R R Shivers, and F E Arthur, and P D Bowman
July 2006, Journal of cellular physiology,
R R Shivers, and F E Arthur, and P D Bowman
January 1991, Annals of the New York Academy of Sciences,
R R Shivers, and F E Arthur, and P D Bowman
November 1989, Journal of neurochemistry,
R R Shivers, and F E Arthur, and P D Bowman
October 1992, Current opinion in cell biology,
R R Shivers, and F E Arthur, and P D Bowman
August 1975, Journal of neurocytology,
R R Shivers, and F E Arthur, and P D Bowman
March 1987, Journal of neuropathology and experimental neurology,
R R Shivers, and F E Arthur, and P D Bowman
February 2010, Experimental and molecular pathology,
Copied contents to your clipboard!