Study of yeast mitochondrial tRNAs by two-dimensional polyacrylamide gel electrophoresis: characterization of isoaccepting species and search for imported cytoplasmic tRNAs. 1977

R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer

By two-dimensional polyacrylamide gel electrophoresis, yeast mitochondrial tRNA is fractionated into 27 major species. All but 6 of them migrate distinctly from cytoplasmic tRNAs. Migration of mitochondrial DNA-coded mitochondrial tRNAs shows the occurence of only one cytoplasmic tRNA in mitochondria. Several mitochondrial tRNA spots are identified on the electrophoregrams, some of them show isoaccepting species (Val, Ser, Met, Leu). It is suggested that there are sufficient mitochondrial tRNA genes on yeast mitochondrial DNA to allow mitochondrial protein biosynthesis by the mitochondrial tRNAs alone. Guanosine + Cytidine content and rate base composition are reported for some individual species. Mitochondrial tRNAPhe lacks Ribothymidine.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
February 1975, FEBS letters,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
January 1983, Molekuliarnaia biologiia,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
August 1979, Molecular & general genetics : MGG,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
April 1976, Molecular & general genetics : MGG,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
March 1974, Plant physiology,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
July 1978, Molecular & general genetics : MGG,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
January 1996, Methods in enzymology,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
January 1993, Methods in molecular biology (Clifton, N.J.),
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
January 1986, Current genetics,
R P Martin, and J M Schneller, and A J Stahl, and G Dirheimer
June 1979, The Journal of biological chemistry,
Copied contents to your clipboard!