Evidence that the requirements for ATP and wheat germ initiation factors 4A and 4F are affected by a region of satellite tobacco necrosis virus RNA that is 3' to the ribosomal binding site. 1988

K S Browning, and L Fletcher, and J M Ravel
Department of Chemistry, University of Texas, Austin 78712-1096.

A cDNA containing the complete genome of satellite tobacco necrosis virus (STNV) RNA was constructed and cloned into a plasmid vector containing the T7 polymerase promotor. A second clone containing the first 54 nucleotides from the 5' end, which includes the ribosome binding site, was also constructed. RNAs were transcribed from these plasmids (pSTNV1239 and pSTNV54) and tested for their ability to bind to wheat germ 40 S ribosomal subunits in the presence of wheat germ initiation factors eIF-4A, eIF-4F, eIF-4G, eIF-3, eIF-2, Met-tRNA, ATP, and guanosine 5'-(beta, gamma-imino)triphosphate (GMP-PNP). Maximal binding of the STNV RNA transcribed from pSTNV1239 is obtained only in the presence of all the initiation factors and ATP. In contrast, close to maximal binding of STNV RNA transcribed from pSTNV54 is obtained in the absence of eIF-4A, eIF-4F, eIF-4G, and ATP. A series of deletion clones from the 3' end of the STNV cDNA was prepared, and the requirements for binding to 40 S ribosomal subunits were determined. STNV RNAs containing more than 134 nucleotides from the 5' end require eIF-4A, eIF-4F, eIF-4G, and ATP for maximal binding to 40 S ribosomal subunits, whereas STNV RNAs containing 86 nucleotides or less no longer require ATP and these factors. These findings indicate that a region 3' to the initiation codon affects the requirements for eIF-4A, eIF-4F, eIF-4G, and ATP.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D010942 Plant Viruses Viruses parasitic on plants. Phytophagineae,Plant Virus,Virus, Plant,Viruses, Plant
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D039562 Eukaryotic Initiation Factor-4F A trimeric peptide initiation factor complex that associates with the 5' MRNA cap structure of RNA (RNA CAPS) and plays an essential role in MRNA TRANSLATION. It is composed of EUKARYOTIC INITIATION FACTOR-4A; EUKARYOTIC INITIATION FACTOR-4E; and EUKARYOTIC INITIATION FACTOR-4G. EIF-4F,Peptide Initiation Factor EIF-4F,EIF-(iso)4F,EIF4F,EIF4F Translation Initiation Complex,Eukaryotic Initiation Factor-(iso)4F,Protein Initiation Factor EIF-4F,EIF 4F,Eukaryotic Initiation Factor 4F,Initiation Factor-4F, Eukaryotic,Peptide Initiation Factor EIF 4F,Protein Initiation Factor EIF 4F

Related Publications

K S Browning, and L Fletcher, and J M Ravel
November 1986, The Journal of biological chemistry,
K S Browning, and L Fletcher, and J M Ravel
September 1993, The Journal of biological chemistry,
K S Browning, and L Fletcher, and J M Ravel
July 1988, The Journal of biological chemistry,
K S Browning, and L Fletcher, and J M Ravel
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
K S Browning, and L Fletcher, and J M Ravel
November 1977, FEBS letters,
K S Browning, and L Fletcher, and J M Ravel
June 1993, Molecular and cellular biology,
K S Browning, and L Fletcher, and J M Ravel
May 1980, Biochemistry,
K S Browning, and L Fletcher, and J M Ravel
June 1977, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!