Tissue effects of a newly developed diode pumped pulsed Thulium:YAG laser compared to continuous wave Thulium:YAG and pulsed Holmium:YAG laser. 2021

Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
Department of Urology and Urologic Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. huusmann.stephan@mh-hannover.de.

OBJECTIVE The objective of this study is to evaluate the laser-tissue effects of laser radiation emitted by a newly developed high frequency pulsed Tm:YAG laser in comparison to the continuous wave Tm:YAG laser and the pulsed Ho:YAG laser. METHODS Ex-vivo experiments were performed on freshly slaughtered porcine kidneys in a physiological saline solution. Experiments were performed using two different laser devices in different settings: A Tm:YAG laser was operated in a pulsed mode up to 300 Hz and in a continuous wave (CW) mode. Results were compared with a 100 W standard pulsed Ho:YAG laser system. Comparative tissue experiments were performed at 5 W, 40 W and 80 W. The incision depth and the laser damage zone were measured under a microscope using a calibrated ocular scale. RESULTS Increased laser power resulted in increased incision depth and increased laser damage zone for all investigated lasers in this set-up. The Ho:YAG created the largest combined tissue effect at the 5 W power setting and seems to be the least controllable laser at low power for soft tissue incisions. The CW Tm:YAG did not incise at all at 5 W, but created the largest laser damage zone. For the new pulsed Tm:YAG laser the tissue effect grew evenly with increasing power. CONCLUSIONS Among the investigated laser systems in this setting the pulsed Tm:YAG laser shows the most controllable behavior, insofar as both the incision depth and the laser damage zone increase evenly with increasing laser power.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013932 Thulium An element of the rare earth family of metals. It has the atomic symbol Tm, atomic number 69, and atomic weight 168.93.
D053685 Laser Therapy The use of photothermal effects of LASERS to coagulate, incise, vaporize, resect, dissect, or resurface tissue. Laser Knife,Laser Scalpel,Surgery, Laser,Vaporization, Laser,Laser Ablation,Laser Knives,Laser Photoablation of Tissue,Laser Surgery,Laser Tissue Ablation,Nonablative Laser Treatment,Pulsed Laser Tissue Ablation,Ablation, Laser,Ablation, Laser Tissue,Knife, Laser,Knifes, Laser,Knive, Laser,Knives, Laser,Laser Knifes,Laser Knive,Laser Scalpels,Laser Surgeries,Laser Therapies,Laser Treatment, Nonablative,Laser Treatments, Nonablative,Laser Vaporization,Nonablative Laser Treatments,Scalpel, Laser,Scalpels, Laser,Surgeries, Laser,Therapies, Laser,Therapy, Laser,Tissue Ablation, Laser
D053844 Lasers, Solid-State Lasers which use a solid, as opposed to a liquid or gas, as the lasing medium. Common materials used are crystals, such as YAG (YTTRIUM aluminum garnet); alexandrite; and CORUNDUM, doped with a rare earth element such as a NEODYMIUM; ERBIUM; or HOLMIUM. The output is sometimes additionally modified by addition of non-linear optical materials such as potassium titanyl phosphate crystal, which for example is used with neodymium YAG lasers to convert the output light to the visible range. Alexandrite Laser,Alexandrite Lasers,Diode Pumped Solid State Laser,Diode Pumped Solid State Lasers,Er-YAG Laser,Er-YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Laser,Erbium YAG Laser,Erbium-Doped Yttrium Aluminum Garnet Laser,Erbium-Doped Yttrium Aluminum Garnet Lasers,Ho YAG Laser,Ho YAG Lasers,Holmium Doped Yttrium Aluminum Garnet Lasers,Holmium Laser,Holmium-YAG Laser,Holmium-YAG Lasers,KTP Laser,Laser, Nd-YAG,Nd-YAG Laser,Nd-YAG Lasers,Neodymium-Doped Yttrium Aluminum Garnet Laser,Neodymium-Doped Yttrium Aluminum Garnet Lasers,Potassium Titanyl Phosphate Laser,Ruby Laser,Ruby Lasers,Solid-State Laser,YAG Laser,YAG Lasers,YLF Laser,YLF Lasers,YSGG Laser,YSGG Lasers,Yttrium Aluminum Garnet Laser,Yttrium-Lithium-Fluoride Laser,Yttrium-Lithium-Fluoride Lasers,Yttrium-Scandium-Gallium Garnet Laser,Yttrium-Scandium-Gallium Garnet Lasers,Erbium YAG Lasers,Holmium Lasers,KTP Lasers,Lasers, Alexandrite,Lasers, Diode Pumped Solid State,Lasers, Er-YAG,Lasers, Erbium-Doped Yttrium Aluminum Garnet,Lasers, Ho-YAG,Lasers, Holmium Doped Yttrium Aluminum Garnet,Lasers, Nd-YAG,Lasers, Neodymium-Doped Yttrium Aluminum Garnet,Lasers, Ruby,Lasers, YAG,Lasers, Yttrium Aluminum Garnet,Lasers, Yttrium-Lithium-Fluoride,Potassium Titanyl Phosphate Lasers,Yttrium Aluminum Garnet Lasers,Er YAG Laser,Er YAG Lasers,Erbium Doped Yttrium Aluminum Garnet Lasers,Ho-YAG Laser,Ho-YAG Lasers,Holmium YAG Laser,Holmium YAG Lasers,Laser, Alexandrite,Laser, Er-YAG,Laser, Erbium YAG,Laser, Ho YAG,Laser, Ho-YAG,Laser, Holmium,Laser, Holmium-YAG,Laser, KTP,Laser, Nd YAG,Laser, Ruby,Laser, Solid-State,Laser, YAG,Laser, YLF,Laser, YSGG,Laser, Yttrium-Lithium-Fluoride,Laser, Yttrium-Scandium-Gallium Garnet,Lasers, Er YAG,Lasers, Erbium Doped Yttrium Aluminum Garnet,Lasers, Erbium YAG,Lasers, Ho YAG,Lasers, Holmium,Lasers, Holmium-YAG,Lasers, KTP,Lasers, Nd YAG,Lasers, Neodymium Doped Yttrium Aluminum Garnet,Lasers, Solid State,Lasers, YLF,Lasers, YSGG,Lasers, Yttrium Lithium Fluoride,Lasers, Yttrium-Scandium-Gallium Garnet,Nd YAG Laser,Nd YAG Lasers,Neodymium Doped Yttrium Aluminum Garnet Laser,Neodymium Doped Yttrium Aluminum Garnet Lasers,Solid State Laser,Solid-State Lasers,YAG Laser, Erbium,YAG Laser, Ho,YAG Lasers, Erbium,YAG Lasers, Ho,Yttrium Lithium Fluoride Laser,Yttrium Lithium Fluoride Lasers,Yttrium Scandium Gallium Garnet Laser,Yttrium Scandium Gallium Garnet Lasers
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
May 2006, Applied optics,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
December 1986, Optics letters,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
January 2011, Optics letters,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
June 2018, Optics express,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
August 2015, The Review of scientific instruments,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
March 1988, Optics letters,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
January 2008, Optics express,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
November 2000, Optics letters,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
August 2007, Optics letters,
Stephan Huusmann, and Marcel Lafos, and Ingo Meyenburg, and Rolf Muschter, and Heinrich-Otto Teichmann, and Thomas Herrmann
June 1988, Optics letters,
Copied contents to your clipboard!