Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer's disease. 1988

D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
Department of Psychiatry, McGill University, Montreal, Quebec, Canada.

The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline

Related Publications

D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
October 1989, Japanese journal of pharmacology,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
December 1985, Journal of the neurological sciences,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
September 2012, The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
January 2013, Journal of Alzheimer's disease : JAD,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
January 2016, Parkinson's disease,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
January 1994, Neurobiology of aging,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
November 1992, Neurochemical research,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
April 2021, Proteomics,
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
January 1989, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova (Moscow, Russia : 1952),
D M Araujo, and P A Lapchak, and Y Robitaille, and S Gauthier, and R Quirion
January 1993, Journal of neurochemistry,
Copied contents to your clipboard!