Direction-selective adaptation in simple and complex cells in cat striate cortex. 1988

S G Marlin, and S J Hasan, and M S Cynader
Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada.

1. The selectivity of adaptation to unidirectional motion was examined in neurons of the cat striate cortex. Following prolonged stimulation with a unidirectional high-contrast grating, the responsivity of cortical neurons was reduced. In many units this decrease was restricted to the direction of prior stimulation. This selective adaptation produced changes in the degree of direction selectivity of the cortical units (as measured by the ratio of the response to motion in the preferred direction to that in the nonpreferred direction). 2. The initial strength of the directional preference of a given cortical unit did not determine the degree of direction-selective adaptation. Indeed, even non-direction-selective units could exhibit pronounced direction-selective adaptation. The degree of direction-selective adaptation was also independent of the overall decrease in responsivity during adaptation. 3. There was no difference between simple and complex cells in the total amount of adaptation observed. The selectivity of the adaptation, however, did differ between these two cell types. As a group, simple cells showed significant direction-selective adaptation, whereas complex cells did not. The directional preference of most simple cells decreased following preferred direction adaptation and many highly direction selective simple cells became non-direction selective. In addition, simple cells became significantly more direction selective following nonpreferred direction adaptation. 4. Some complex cells also demonstrated direction-selective adaptation. There was, however, much more variability among complex cells than simple cells. Some complex cells actually increased direction selectivity following preferred direction adaptation. These differences between simple and complex cells suggest that changes in direction selectivity following unidirectional adaptation are not due to simple neuronal fatigue of the unit being recorded, but depend on selective adaptation of afferent inputs to the unit. 5. The spontaneous activity of many cortical neurons decreased following preferred direction adaptation but increased following adaptation in the nonpreferred direction. The response to a stationary grating also decreased following preferred direction adaptation. However, there was very little change in the response to a stationary grating following adaptation in the nonpreferred direction.

UI MeSH Term Description Entries
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

S G Marlin, and S J Hasan, and M S Cynader
November 1993, Journal of neurophysiology,
S G Marlin, and S J Hasan, and M S Cynader
May 1980, Journal of neurophysiology,
S G Marlin, and S J Hasan, and M S Cynader
September 1998, Nature neuroscience,
S G Marlin, and S J Hasan, and M S Cynader
July 1987, Journal of neurophysiology,
S G Marlin, and S J Hasan, and M S Cynader
September 1978, Journal of neurophysiology,
S G Marlin, and S J Hasan, and M S Cynader
June 1986, Journal of neurophysiology,
S G Marlin, and S J Hasan, and M S Cynader
January 1984, Vision research,
S G Marlin, and S J Hasan, and M S Cynader
November 1977, Experimental brain research,
S G Marlin, and S J Hasan, and M S Cynader
January 1976, Vision research,
Copied contents to your clipboard!