Steroid structure and function. Molecular conformation of 4-hydroxyestradiol and its relation to other catechol estrogens. 1988

Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
Medical Foundation of Buffalo, Inc., NY 14203.

Hydroxylation of estrogens at C(2) or C(4) effects differentially their binding affinity to and dissociation rate from the estrogen receptor. The X-ray crystal structure of 4-hydroxyestradiol (4-OH-E2) is reported here and compared with that of 2-hydroxyestradiol (2-OH-E2), the 2- and 4-hydroxylated derivatives of estrone (E1) and with that of the parent estrogens, E1 and E2. The overall molecular shape and hydrogen bonding patterns of each were examined for their possible relevance to their binding to the estrogen receptor and their biological activity. A shift in the B-ring conformation away from the symmetrical 7 alpha,8 beta-half-chair form toward the 8 beta-sofa form is induced by both 2- and 4-hydroxy substitution. This shift appears to be larger in the case of E2 than E1 derivatives and to be correlated with an observed change in the hydrogen bonding potential of the C(3) hydroxyl. In 4-OH-E2, as in E2 and 4-OH-E1, the C(3) hydroxyl functions both as a hydrogen bond donor and acceptor. In contrast in 2-OH-E2 the hydroxyl functions only as a donor. The markedly reduced affinity of 2-hydroxylated estrogens for the estrogen receptor could be due to a combination of steric interactions, competition between O(2) and O(3) for hydrogen bonds for a common site on the receptor, and to general interference with hydrogen bond formation of O(3). The C(4) hydroxyl participates in the formation of a chain of hydrogen bonds in the solid state that is similar to a chain seen in single crystals of E2. The presence of a similar chain of hydrogen bonds involving O(3) in the receptor site could account for the decreased dissociation rate of the 4-OH-E2 receptor complex.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D002393 Estrogens, Catechol 2- or 4-Hydroxyestrogens. Substances that are physiologically active in mammals, especially in the control of gonadotropin secretion. Physiological activity can be ascribed to either an estrogenic action or interaction with the catecholaminergic system. Catechol Estrogens,Catecholestrogens
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
March 1983, Journal of steroid biochemistry,
Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
September 2004, Chemical research in toxicology,
Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
January 1982, Ukrainskii biokhimicheskii zhurnal (1978),
Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
September 1982, Contraception,
Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
January 1982, Progress in clinical and biological research,
Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
February 1982, Contraception,
Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
July 1972, The Journal of biological chemistry,
Z Wawrzak, and W L Duax, and P D Strong, and J Weisz
April 1980, Journal of steroid biochemistry,
Copied contents to your clipboard!